mirror of https://github.com/JDAI-CV/fast-reid.git
48 lines
1.3 KiB
Python
48 lines
1.3 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: xingyu liao
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import os
|
|
from glob import glob
|
|
|
|
from fastreid.data.datasets import DATASET_REGISTRY
|
|
from fastreid.data.datasets.bases import ImageDataset
|
|
|
|
__all__ = ['SAIVT', ]
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class SAIVT(ImageDataset):
|
|
"""SAIVT
|
|
"""
|
|
dataset_dir = "SAIVT-SoftBio"
|
|
dataset_name = "saivt"
|
|
|
|
def __init__(self, root='datasets', **kwargs):
|
|
self.root = root
|
|
self.train_path = os.path.join(self.root, self.dataset_dir)
|
|
|
|
required_files = [self.train_path]
|
|
self.check_before_run(required_files)
|
|
|
|
train = self.process_train(self.train_path)
|
|
|
|
super().__init__(train, [], [], **kwargs)
|
|
|
|
def process_train(self, train_path):
|
|
data = []
|
|
|
|
pid_path = os.path.join(train_path, "cropped_images")
|
|
pid_list = os.listdir(pid_path)
|
|
|
|
for pid_name in pid_list:
|
|
pid = self.dataset_name + '_' + pid_name
|
|
img_list = glob(os.path.join(pid_path, pid_name, "*.jpeg"))
|
|
for img_path in img_list:
|
|
img_name = os.path.basename(img_path)
|
|
camid = self.dataset_name + '_' + img_name.split('-')[2]
|
|
data.append([img_path, pid, camid])
|
|
return data
|