fast-reid/fastreid/data/datasets/saivt.py

48 lines
1.3 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SAIVT', ]
@DATASET_REGISTRY.register()
class SAIVT(ImageDataset):
"""SAIVT
"""
dataset_dir = "SAIVT-SoftBio"
dataset_name = "saivt"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
pid_path = os.path.join(train_path, "cropped_images")
pid_list = os.listdir(pid_path)
for pid_name in pid_list:
pid = self.dataset_name + '_' + pid_name
img_list = glob(os.path.join(pid_path, pid_name, "*.jpeg"))
for img_path in img_list:
img_name = os.path.basename(img_path)
camid = self.dataset_name + '_' + img_name.split('-')[2]
data.append([img_path, pid, camid])
return data