fast-reid/fastreid/modeling/heads/bn_linear.py

42 lines
1.2 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from torch import nn
import torch.nn.functional as F
from .build import REID_HEADS_REGISTRY
from ..model_utils import weights_init_classifier, weights_init_kaiming
from ...layers import bn_no_bias
@REID_HEADS_REGISTRY.register()
class BNneckLinear(nn.Module):
def __init__(self, cfg):
super().__init__()
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.gap = nn.AdaptiveAvgPool2d(1)
self.bnneck = bn_no_bias(2048)
self.bnneck.apply(weights_init_kaiming)
self.classifier = nn.Linear(2048, self._num_classes, bias=False)
self.classifier.apply(weights_init_classifier)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
global_features = self.gap(features)
global_features = global_features.view(global_features.shape[0], -1)
bn_features = self.bnneck(global_features)
if not self.training:
return F.normalize(bn_features)
pred_class_logits = self.classifier(bn_features)
return pred_class_logits, global_features, targets