mirror of https://github.com/JDAI-CV/fast-reid.git
279 lines
12 KiB
Python
279 lines
12 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import os
|
|
import pickle
|
|
import random
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import tqdm
|
|
from scipy.stats import norm
|
|
from sklearn import metrics
|
|
|
|
from .file_io import PathManager
|
|
|
|
|
|
class Visualizer:
|
|
r"""Visualize images(activation map) ranking list of features generated by reid models."""
|
|
|
|
def __init__(self, dataset):
|
|
self.dataset = dataset
|
|
|
|
def get_model_output(self, all_ap, dist, q_pids, g_pids, q_camids, g_camids):
|
|
self.all_ap = all_ap
|
|
self.dist = dist
|
|
self.sim = 1 - dist
|
|
self.q_pids = q_pids
|
|
self.g_pids = g_pids
|
|
self.q_camids = q_camids
|
|
self.g_camids = g_camids
|
|
|
|
self.indices = np.argsort(dist, axis=1)
|
|
self.matches = (g_pids[self.indices] == q_pids[:, np.newaxis]).astype(np.int32)
|
|
|
|
self.num_query = len(q_pids)
|
|
|
|
def get_matched_result(self, q_index):
|
|
q_pid = self.q_pids[q_index]
|
|
q_camid = self.q_camids[q_index]
|
|
|
|
order = self.indices[q_index]
|
|
remove = (self.g_pids[order] == q_pid) & (self.g_camids[order] == q_camid)
|
|
keep = np.invert(remove)
|
|
cmc = self.matches[q_index][keep]
|
|
sort_idx = order[keep]
|
|
return cmc, sort_idx
|
|
|
|
def save_rank_result(self, query_indices, output, max_rank=5, vis_label=False, label_sort='ascending',
|
|
actmap=False):
|
|
if vis_label:
|
|
fig, axes = plt.subplots(2, max_rank + 1, figsize=(3 * max_rank, 12))
|
|
else:
|
|
fig, axes = plt.subplots(1, max_rank + 1, figsize=(3 * max_rank, 6))
|
|
for cnt, q_idx in enumerate(tqdm.tqdm(query_indices)):
|
|
all_imgs = []
|
|
cmc, sort_idx = self.get_matched_result(q_idx)
|
|
query_info = self.dataset[q_idx]
|
|
query_img = query_info['images']
|
|
cam_id = query_info['camids']
|
|
query_name = query_info['img_paths'].split('/')[-1]
|
|
all_imgs.append(query_img)
|
|
query_img = np.rollaxis(np.asarray(query_img.numpy(), dtype=np.uint8), 0, 3)
|
|
plt.clf()
|
|
ax = fig.add_subplot(1, max_rank + 1, 1)
|
|
ax.imshow(query_img)
|
|
ax.set_title('{:.4f}/cam{}'.format(self.all_ap[q_idx], cam_id))
|
|
ax.axis("off")
|
|
for i in range(max_rank):
|
|
if vis_label:
|
|
ax = fig.add_subplot(2, max_rank + 1, i + 2)
|
|
else:
|
|
ax = fig.add_subplot(1, max_rank + 1, i + 2)
|
|
g_idx = self.num_query + sort_idx[i]
|
|
gallery_info = self.dataset[g_idx]
|
|
gallery_img = gallery_info['images']
|
|
cam_id = gallery_info['camids']
|
|
all_imgs.append(gallery_img)
|
|
gallery_img = np.rollaxis(np.asarray(gallery_img, dtype=np.uint8), 0, 3)
|
|
if cmc[i] == 1:
|
|
label = 'true'
|
|
ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
|
|
height=gallery_img.shape[0] - 1, edgecolor=(1, 0, 0),
|
|
fill=False, linewidth=5))
|
|
else:
|
|
label = 'false'
|
|
ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
|
|
height=gallery_img.shape[0] - 1,
|
|
edgecolor=(0, 0, 1), fill=False, linewidth=5))
|
|
ax.imshow(gallery_img)
|
|
ax.set_title(f'{self.sim[q_idx, sort_idx[i]]:.3f}/{label}/cam{cam_id}')
|
|
ax.axis("off")
|
|
# if actmap:
|
|
# act_outputs = []
|
|
#
|
|
# def hook_fns_forward(module, input, output):
|
|
# act_outputs.append(output.cpu())
|
|
#
|
|
# all_imgs = np.stack(all_imgs, axis=0) # (b, 3, h, w)
|
|
# all_imgs = torch.from_numpy(all_imgs).float()
|
|
# # normalize
|
|
# all_imgs = all_imgs.sub_(self.mean).div_(self.std)
|
|
# sz = list(all_imgs.shape[-2:])
|
|
# handle = m.base.register_forward_hook(hook_fns_forward)
|
|
# with torch.no_grad():
|
|
# _ = m(all_imgs.cuda())
|
|
# handle.remove()
|
|
# acts = self.get_actmap(act_outputs[0], sz)
|
|
# for i in range(top + 1):
|
|
# axes.flat[i].imshow(acts[i], alpha=0.3, cmap='jet')
|
|
if vis_label:
|
|
label_indice = np.where(cmc == 1)[0]
|
|
if label_sort == "ascending": label_indice = label_indice[::-1]
|
|
label_indice = label_indice[:max_rank]
|
|
for i in range(max_rank):
|
|
if i >= len(label_indice): break
|
|
j = label_indice[i]
|
|
g_idx = self.num_query + sort_idx[j]
|
|
gallery_info = self.dataset[g_idx]
|
|
gallery_img = gallery_info['images']
|
|
cam_id = gallery_info['camids']
|
|
gallery_img = np.rollaxis(np.asarray(gallery_img, dtype=np.uint8), 0, 3)
|
|
ax = fig.add_subplot(2, max_rank + 1, max_rank + 3 + i)
|
|
ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
|
|
height=gallery_img.shape[0] - 1,
|
|
edgecolor=(1, 0, 0),
|
|
fill=False, linewidth=5))
|
|
ax.imshow(gallery_img)
|
|
ax.set_title(f'{self.sim[q_idx, sort_idx[j]]:.3f}/cam{cam_id}')
|
|
ax.axis("off")
|
|
|
|
plt.tight_layout()
|
|
filepath = os.path.join(output, "{}.jpg".format(cnt))
|
|
fig.savefig(filepath)
|
|
|
|
def vis_rank_list(self, output, vis_label, num_vis=100, rank_sort="ascending", label_sort="ascending", max_rank=5,
|
|
actmap=False):
|
|
r"""Visualize rank list of query instance
|
|
Args:
|
|
output (str): a directory to save rank list result.
|
|
vis_label (bool): if visualize label of query
|
|
num_vis (int):
|
|
rank_sort (str): save visualization results by which order,
|
|
if rank_sort is ascending, AP from low to high, vice versa.
|
|
label_sort (bool):
|
|
max_rank (int): maximum number of rank result to visualize
|
|
actmap (bool):
|
|
"""
|
|
assert rank_sort in ['ascending', 'descending'], "{} not match [ascending, descending]".format(rank_sort)
|
|
|
|
query_indices = np.argsort(self.all_ap)
|
|
if rank_sort == 'descending': query_indices = query_indices[::-1]
|
|
|
|
query_indices = query_indices[:num_vis]
|
|
self.save_rank_result(query_indices, output, max_rank, vis_label, label_sort, actmap)
|
|
|
|
def vis_roc_curve(self, output):
|
|
PathManager.mkdirs(output)
|
|
pos, neg = [], []
|
|
for i, q in enumerate(self.q_pids):
|
|
cmc, sort_idx = self.get_matched_result(i) # remove same id in same camera
|
|
ind_pos = np.where(cmc == 1)[0]
|
|
q_dist = self.dist[i]
|
|
pos.extend(q_dist[sort_idx[ind_pos]])
|
|
|
|
ind_neg = np.where(cmc == 0)[0]
|
|
neg.extend(q_dist[sort_idx[ind_neg]])
|
|
|
|
scores = np.hstack((pos, neg))
|
|
labels = np.hstack((np.zeros(len(pos)), np.ones(len(neg))))
|
|
|
|
fpr, tpr, thresholds = metrics.roc_curve(labels, scores)
|
|
|
|
self.plot_roc_curve(fpr, tpr)
|
|
filepath = os.path.join(output, "roc.jpg")
|
|
plt.savefig(filepath)
|
|
# self.plot_distribution(pos, neg)
|
|
# filepath = os.path.join(output, "pos_neg_dist.jpg")
|
|
# plt.savefig(filepath)
|
|
return fpr, tpr, pos, neg
|
|
|
|
@staticmethod
|
|
def plot_roc_curve(fpr, tpr, name='model', fig=None):
|
|
if fig is None:
|
|
fig = plt.figure()
|
|
plt.semilogx(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01), 'r', linestyle='--', label='Random guess')
|
|
plt.semilogx(fpr, tpr, color=(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)),
|
|
label='ROC curve with {}'.format(name))
|
|
plt.title('Receiver Operating Characteristic')
|
|
plt.xlabel('False Positive Rate')
|
|
plt.ylabel('True Positive Rate')
|
|
plt.legend(loc='best')
|
|
return fig
|
|
|
|
@staticmethod
|
|
def plot_distribution(pos, neg, name='model', fig=None):
|
|
if fig is None:
|
|
fig = plt.figure()
|
|
pos_color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))
|
|
n, bins, _ = plt.hist(pos, bins=80, alpha=0.7, density=True,
|
|
color=pos_color,
|
|
label='positive with {}'.format(name))
|
|
mu = np.mean(pos)
|
|
sigma = np.std(pos)
|
|
y = norm.pdf(bins, mu, sigma) # fitting curve
|
|
plt.plot(bins, y, color=pos_color) # plot y curve
|
|
|
|
neg_color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))
|
|
n, bins, _ = plt.hist(neg, bins=80, alpha=0.5, density=True,
|
|
color=neg_color,
|
|
label='negative with {}'.format(name))
|
|
mu = np.mean(neg)
|
|
sigma = np.std(neg)
|
|
y = norm.pdf(bins, mu, sigma) # fitting curve
|
|
plt.plot(bins, y, color=neg_color) # plot y curve
|
|
|
|
plt.xticks(np.arange(0, 1.5, 0.1))
|
|
plt.title('positive and negative pairs distribution')
|
|
plt.legend(loc='best')
|
|
return fig
|
|
|
|
@staticmethod
|
|
def save_roc_info(output, fpr, tpr, pos, neg):
|
|
results = {
|
|
"fpr": np.asarray(fpr),
|
|
"tpr": np.asarray(tpr),
|
|
"pos": np.asarray(pos),
|
|
"neg": np.asarray(neg),
|
|
}
|
|
with open(os.path.join(output, "roc_info.pickle"), "wb") as handle:
|
|
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
@staticmethod
|
|
def load_roc_info(path):
|
|
with open(path, 'rb') as handle: res = pickle.load(handle)
|
|
return res
|
|
|
|
# def plot_camera_dist(self):
|
|
# same_cam, diff_cam = [], []
|
|
# for i, q in enumerate(self.q_pids):
|
|
# q_camid = self.q_camids[i]
|
|
#
|
|
# order = self.indices[i]
|
|
# same = (self.g_pids[order] == q) & (self.g_camids[order] == q_camid)
|
|
# diff = (self.g_pids[order] == q) & (self.g_camids[order] != q_camid)
|
|
# sameCam_idx = order[same]
|
|
# diffCam_idx = order[diff]
|
|
#
|
|
# same_cam.extend(self.sim[i, sameCam_idx])
|
|
# diff_cam.extend(self.sim[i, diffCam_idx])
|
|
#
|
|
# fig = plt.figure(figsize=(10, 5))
|
|
# plt.hist(same_cam, bins=80, alpha=0.7, density=True, color='red', label='same camera')
|
|
# plt.hist(diff_cam, bins=80, alpha=0.5, density=True, color='blue', label='diff camera')
|
|
# plt.xticks(np.arange(0.1, 1.0, 0.1))
|
|
# plt.title('positive and negative pair distribution')
|
|
# return fig
|
|
|
|
# def get_actmap(self, features, sz):
|
|
# """
|
|
# :param features: (1, 2048, 16, 8) activation map
|
|
# :return:
|
|
# """
|
|
# features = (features ** 2).sum(1) # (1, 16, 8)
|
|
# b, h, w = features.size()
|
|
# features = features.view(b, h * w)
|
|
# features = nn.functional.normalize(features, p=2, dim=1)
|
|
# acts = features.view(b, h, w)
|
|
# all_acts = []
|
|
# for i in range(b):
|
|
# act = acts[i].numpy()
|
|
# act = cv2.resize(act, (sz[1], sz[0]))
|
|
# act = 255 * (act - act.max()) / (act.max() - act.min() + 1e-12)
|
|
# act = np.uint8(np.floor(act))
|
|
# all_acts.append(act)
|
|
# return all_acts
|