fast-reid/fastreid/modeling/losses/cross_entroy_loss.py

69 lines
2.1 KiB
Python

# encoding: utf-8
"""
@author: l1aoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch
import torch.nn.functional as F
from fastreid.utils.events import get_event_storage
class CrossEntropyLoss(object):
"""
A class that stores information and compute losses about outputs of a Baseline head.
"""
def __init__(self, cfg):
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self._eps = cfg.MODEL.LOSSES.CE.EPSILON
self._alpha = cfg.MODEL.LOSSES.CE.ALPHA
self._scale = cfg.MODEL.LOSSES.CE.SCALE
@staticmethod
def log_accuracy(pred_class_logits, gt_classes, topk=(1,)):
"""
Log the accuracy metrics to EventStorage.
"""
bsz = pred_class_logits.size(0)
maxk = max(topk)
_, pred_class = pred_class_logits.topk(maxk, 1, True, True)
pred_class = pred_class.t()
correct = pred_class.eq(gt_classes.view(1, -1).expand_as(pred_class))
ret = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(dim=0, keepdim=True)
ret.append(correct_k.mul_(1. / bsz))
storage = get_event_storage()
storage.put_scalar("cls_accuracy", ret[0])
def __call__(self, pred_class_logits, gt_classes):
"""
Compute the softmax cross entropy loss for box classification.
Returns:
scalar Tensor
"""
if self._eps >= 0:
smooth_param = self._eps
else:
# adaptive lsr
soft_label = F.softmax(pred_class_logits, dim=1)
smooth_param = self._alpha * soft_label[torch.arange(soft_label.size(0)), gt_classes].unsqueeze(1)
log_probs = F.log_softmax(pred_class_logits, dim=1)
with torch.no_grad():
targets = torch.ones_like(log_probs)
targets *= smooth_param / (self._num_classes - 1)
targets.scatter_(1, gt_classes.data.unsqueeze(1), (1 - smooth_param))
loss = (-targets * log_probs).sum(dim=1)
with torch.no_grad():
non_zero_cnt = max(loss.nonzero().size(0), 1)
loss = loss.sum() / non_zero_cnt
return loss * self._scale