mirror of https://github.com/JDAI-CV/fast-reid.git
69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: l1aoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from fastreid.utils.events import get_event_storage
|
|
|
|
|
|
class CrossEntropyLoss(object):
|
|
"""
|
|
A class that stores information and compute losses about outputs of a Baseline head.
|
|
"""
|
|
|
|
def __init__(self, cfg):
|
|
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
|
|
self._eps = cfg.MODEL.LOSSES.CE.EPSILON
|
|
self._alpha = cfg.MODEL.LOSSES.CE.ALPHA
|
|
self._scale = cfg.MODEL.LOSSES.CE.SCALE
|
|
|
|
@staticmethod
|
|
def log_accuracy(pred_class_logits, gt_classes, topk=(1,)):
|
|
"""
|
|
Log the accuracy metrics to EventStorage.
|
|
"""
|
|
bsz = pred_class_logits.size(0)
|
|
maxk = max(topk)
|
|
_, pred_class = pred_class_logits.topk(maxk, 1, True, True)
|
|
pred_class = pred_class.t()
|
|
correct = pred_class.eq(gt_classes.view(1, -1).expand_as(pred_class))
|
|
|
|
ret = []
|
|
for k in topk:
|
|
correct_k = correct[:k].view(-1).float().sum(dim=0, keepdim=True)
|
|
ret.append(correct_k.mul_(1. / bsz))
|
|
|
|
storage = get_event_storage()
|
|
storage.put_scalar("cls_accuracy", ret[0])
|
|
|
|
def __call__(self, pred_class_logits, gt_classes):
|
|
"""
|
|
Compute the softmax cross entropy loss for box classification.
|
|
Returns:
|
|
scalar Tensor
|
|
"""
|
|
if self._eps >= 0:
|
|
smooth_param = self._eps
|
|
else:
|
|
# adaptive lsr
|
|
soft_label = F.softmax(pred_class_logits, dim=1)
|
|
smooth_param = self._alpha * soft_label[torch.arange(soft_label.size(0)), gt_classes].unsqueeze(1)
|
|
|
|
log_probs = F.log_softmax(pred_class_logits, dim=1)
|
|
with torch.no_grad():
|
|
targets = torch.ones_like(log_probs)
|
|
targets *= smooth_param / (self._num_classes - 1)
|
|
targets.scatter_(1, gt_classes.data.unsqueeze(1), (1 - smooth_param))
|
|
|
|
loss = (-targets * log_probs).sum(dim=1)
|
|
|
|
with torch.no_grad():
|
|
non_zero_cnt = max(loss.nonzero().size(0), 1)
|
|
|
|
loss = loss.sum() / non_zero_cnt
|
|
|
|
return loss * self._scale
|