fast-reid/tools/deploy/README.md

161 lines
5.5 KiB
Markdown

# Model Deployment
This directory contains:
1. The scripts that convert a fastreid model to Caffe/ONNX/TRT format.
2. The exmpales that load a R50 baseline model in Caffe/ONNX/TRT and run inference.
## Tutorial
### Caffe Convert
<details>
<summary>step-to-step pipeline for caffe convert</summary>
This is a tiny example for converting fastreid-baseline in `meta_arch` to Caffe model, if you want to convert more complex architecture, you need to customize more things.
1. Run `caffe_export.py` to get the converted Caffe model,
```bash
python caffe_export.py --config-file root-path/market1501/bagtricks_R50/config.yml --name "baseline_R50" --output outputs/caffe_model --opts MODEL.WEIGHTS root-path/logs/market1501/bagtricks_R50/model_final.pth
```
then you can check the Caffe model and prototxt in `outputs/caffe_model`.
2. Change `prototxt` following next three steps:
1) Edit `max_pooling` in `baseline_R50.prototxt` like this
```prototxt
layer {
name: "max_pool1"
type: "Pooling"
bottom: "relu_blob1"
top: "max_pool_blob1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 0 # 1
# ceil_mode: false
}
}
```
2) Add `avg_pooling` right place in `baseline_R50.prototxt`
```prototxt
layer {
name: "avgpool1"
type: "Pooling"
bottom: "relu_blob49"
top: "avgpool_blob1"
pooling_param {
pool: AVE
global_pooling: true
}
}
```
3) Change the last layer `top` name to `output`
```prototxt
layer {
name: "bn_scale54"
type: "Scale"
bottom: "batch_norm_blob54"
top: "output" # bn_norm_blob54
scale_param {
bias_term: true
}
}
```
3. (optional) You can open [Netscope](https://ethereon.github.io/netscope/quickstart.html), then enter you network `prototxt` to visualize the network.
4. Run `caffe_inference.py` to save Caffe model features with input images
```bash
python caffe_inference.py --model-def outputs/caffe_model/baseline_R50.prototxt \
--model-weights outputs/caffe_model/baseline_R50.caffemodel \
--input test_data/*.jpg --output caffe_output
```
6. Run `demo/demo.py` to get fastreid model features with the same input images, then verify that Caffe and PyTorch are computing the same value for the network.
```python
np.testing.assert_allclose(torch_out, ort_out, rtol=1e-3, atol=1e-6)
```
</details>
### ONNX Convert
<details>
<summary>step-to-step pipeline for onnx convert</summary>
This is a tiny example for converting fastreid-baseline in `meta_arch` to ONNX model. ONNX supports most operators in pytorch as far as I know and if some operators are not supported by ONNX, you need to customize these.
1. Run `onnx_export.py` to get the converted ONNX model,
```bash
python onnx_export.py --config-file root-path/bagtricks_R50/config.yml --name "baseline_R50" --output outputs/onnx_model --opts MODEL.WEIGHTS root-path/logs/market1501/bagtricks_R50/model_final.pth
```
then you can check the ONNX model in `outputs/onnx_model`.
2. (optional) You can use [Netron](https://github.com/lutzroeder/netron) to visualize the network.
3. Run `onnx_inference.py` to save ONNX model features with input images
```bash
python onnx_inference.py --model-path outputs/onnx_model/baseline_R50.onnx \
--input test_data/*.jpg --output onnx_output
```
4. Run `demo/demo.py` to get fastreid model features with the same input images, then verify that ONNX Runtime and PyTorch are computing the same value for the network.
```python
np.testing.assert_allclose(torch_out, ort_out, rtol=1e-3, atol=1e-6)
```
</details>
### TensorRT Convert
<details>
<summary>step-to-step pipeline for trt convert</summary>
This is a tiny example for converting fastreid-baseline in `meta_arch` to TRT model. We use [tiny-tensorrt](https://github.com/zerollzeng/tiny-tensorrt) which is a simple and easy-to-use nvidia TensorRt warpper, to get the model converted to tensorRT.
First you need to convert the pytorch model to ONNX format following [ONNX Convert](https://github.com/JDAI-CV/fast-reid#fastreid), and you need to remember your `output` name. Then you can convert ONNX model to TensorRT following instructions below.
1. Run command line below to get the converted TRT model from ONNX model,
```bash
python trt_export.py --name "baseline_R50" --output outputs/trt_model --onnx-model outputs/onnx_model/baseline.onnx --heighi 256 --width 128
```
then you can check the TRT model in `outputs/trt_model`.
2. Run `trt_inference.py` to save TRT model features with input images
```bash
python onnx_inference.py --model-path outputs/trt_model/baseline.engine \
--input test_data/*.jpg --output trt_output --output-name trt_model_outputname
```
3. Run `demo/demo.py` to get fastreid model features with the same input images, then verify that TensorRT and PyTorch are computing the same value for the network.
```python
np.testing.assert_allclose(torch_out, ort_out, rtol=1e-3, atol=1e-6)
```
</details>
## Acknowledgements
Thank to [CPFLAME](https://github.com/CPFLAME), [gcong18](https://github.com/gcong18), [YuxiangJohn](https://github.com/YuxiangJohn) and [wiggin66](https://github.com/wiggin66) at JDAI Model Acceleration Group for help in PyTorch model converting.