mirror of https://github.com/JDAI-CV/fast-reid.git
100 lines
2.7 KiB
Python
100 lines
2.7 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: xingyu liao
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
import argparse
|
|
import glob
|
|
import os
|
|
import sys
|
|
|
|
import cv2
|
|
import numpy as np
|
|
# import tqdm
|
|
|
|
sys.path.append("/export/home/lxy/runtimelib-tensorrt-tiny/build")
|
|
|
|
import pytrt
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(description="trt model inference")
|
|
|
|
parser.add_argument(
|
|
"--model-path",
|
|
default="outputs/trt_model/baseline.engine",
|
|
help="trt model path"
|
|
)
|
|
parser.add_argument(
|
|
"--input",
|
|
nargs="+",
|
|
help="A list of space separated input images; "
|
|
"or a single glob pattern such as 'directory/*.jpg'",
|
|
)
|
|
parser.add_argument(
|
|
"--output",
|
|
default="trt_output",
|
|
help="path to save trt model inference results"
|
|
)
|
|
parser.add_argument(
|
|
"--output-name",
|
|
help="tensorRT model output name"
|
|
)
|
|
parser.add_argument(
|
|
"--height",
|
|
type=int,
|
|
default=256,
|
|
help="height of image"
|
|
)
|
|
parser.add_argument(
|
|
"--width",
|
|
type=int,
|
|
default=128,
|
|
help="width of image"
|
|
)
|
|
return parser
|
|
|
|
|
|
def preprocess(image_path, image_height, image_width):
|
|
original_image = cv2.imread(image_path)
|
|
# the model expects RGB inputs
|
|
original_image = original_image[:, :, ::-1]
|
|
|
|
# Apply pre-processing to image.
|
|
img = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
|
|
img = img.astype("float32").transpose(2, 0, 1)[np.newaxis] # (1, 3, h, w)
|
|
return img
|
|
|
|
|
|
def normalize(nparray, order=2, axis=-1):
|
|
"""Normalize a N-D numpy array along the specified axis."""
|
|
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
|
|
return nparray / (norm + np.finfo(np.float32).eps)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_parser().parse_args()
|
|
|
|
trt = pytrt.Trt()
|
|
|
|
onnxModel = ""
|
|
engineFile = args.model_path
|
|
customOutput = []
|
|
maxBatchSize = 1
|
|
calibratorData = []
|
|
mode = 2
|
|
trt.CreateEngine(onnxModel, engineFile, customOutput, maxBatchSize, mode, calibratorData)
|
|
|
|
if not os.path.exists(args.output): os.makedirs(args.output)
|
|
|
|
if args.input:
|
|
if os.path.isdir(args.input[0]):
|
|
args.input = glob.glob(os.path.expanduser(args.input[0]))
|
|
assert args.input, "The input path(s) was not found"
|
|
for path in args.input:
|
|
input_numpy_array = preprocess(path, args.height, args.width)
|
|
trt.DoInference(input_numpy_array)
|
|
feat = trt.GetOutput(args.output_name)
|
|
feat = normalize(feat, axis=1)
|
|
np.save(os.path.join(args.output, path.replace('.jpg', '.npy').split('/')[-1]), feat)
|