fast-reid/fastreid/modeling/heads/pair_head.py

96 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: utf-8 -*-
# @Time : 2021/10/11 17:44:18
# @Author : zuchen.wang@vipshop.com
# @File : pair_head.py
import torch
from torch import nn
import torch.nn.functional as F
from fastreid.config import configurable
from fastreid.layers import *
from fastreid.modeling.heads import REID_HEADS_REGISTRY, EmbeddingHead
@REID_HEADS_REGISTRY.register()
class PairHead(nn.Module):
@configurable
def __init__(
self,
*,
feat_dim,
embedding_dim,
neck_feat,
pool_type,
with_bnneck,
norm_type
):
"""
NOTE: this interface is experimental.
feat_dim is 2 times of original feat_dim since pair
Args:
feat_dim:
embedding_dim:
neck_feat:
pool_type:
with_bnneck:
norm_type:
"""
super().__init__()
feat_dim *= 2
# Pooling layer
assert hasattr(pooling, pool_type), "Expected pool types are {}, " \
"but got {}".format(pooling.__all__, pool_type)
self.pool_layer = getattr(pooling, pool_type)()
self.neck_feat = neck_feat
neck = []
if embedding_dim > 0:
neck.append(nn.Conv2d(feat_dim, embedding_dim, 1, 1, bias=False))
feat_dim = embedding_dim
if with_bnneck:
neck.append(get_norm(norm_type, feat_dim, bias_freeze=True))
self.bottleneck = nn.Sequential(*neck)
self.reset_parameters()
def reset_parameters(self) -> None:
self.bottleneck.apply(weights_init_kaiming)
@classmethod
def from_config(cls, cfg):
# fmt: off
feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM
embedding_dim = cfg.MODEL.HEADS.EMBEDDING_DIM
neck_feat = cfg.MODEL.HEADS.NECK_FEAT
pool_type = cfg.MODEL.HEADS.POOL_LAYER
with_bnneck = cfg.MODEL.HEADS.WITH_BNNECK
norm_type = cfg.MODEL.HEADS.NORM
# fmt: on
return {
'feat_dim': feat_dim,
'embedding_dim': embedding_dim,
'neck_feat': neck_feat,
'pool_type': pool_type,
'with_bnneck': with_bnneck,
'norm_type': norm_type
}
def forward(self, features, targets=None):
"""
做pair的特征合并得到一个分类相似度
"""
pool_feat = self.pool_layer(features)
neck_feat = self.bottleneck(pool_feat)
neck_feat = neck_feat.view(int(neck_feat.size(0) / 2), -1)
return {
"features": neck_feat,
}