mirror of https://github.com/JDAI-CV/fast-reid.git
110 lines
3.8 KiB
Python
110 lines
3.8 KiB
Python
# coding: utf-8
|
||
|
||
import copy
|
||
import itertools
|
||
import logging
|
||
from collections import OrderedDict
|
||
|
||
import numpy as np
|
||
import torch
|
||
from fastreid.utils import comm
|
||
from sklearn import metrics as skmetrics
|
||
|
||
from .clas_evaluator import ClasEvaluator
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class PairEvaluator(ClasEvaluator):
|
||
def __init__(self, cfg, output_dir=None):
|
||
super(PairEvaluator, self).__init__(cfg=cfg, output_dir=output_dir)
|
||
self._threshold_list = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98]
|
||
|
||
def process(self, inputs, outputs):
|
||
pred_logits = outputs.to(self._cpu_device, torch.float32)
|
||
labels = inputs["targets"].to(self._cpu_device)
|
||
|
||
with torch.no_grad():
|
||
probs = torch.softmax(pred_logits, dim=-1)
|
||
probs, _ = torch.max(probs, dim=-1)
|
||
|
||
labels = labels.numpy()
|
||
probs = probs.numpy()
|
||
batch_size = probs.shape[0]
|
||
|
||
# 计算这3个总体值,还有给定阈值下的precision, recall, f1
|
||
acc = skmetrics.accuracy_score(labels, probs > 0.5) * batch_size
|
||
ap = skmetrics.average_precision_score(labels, probs) * batch_size
|
||
auc = skmetrics.roc_auc_score(labels, probs) * batch_size # auc under roc
|
||
|
||
precisions = []
|
||
recalls = []
|
||
f1s = []
|
||
for thresh in self._threshold_list:
|
||
precision = skmetrics.precision_score(labels, probs >= thresh, zero_division=0) * batch_size
|
||
recall = skmetrics.recall_score(labels, probs >= thresh, zero_division=0) * batch_size
|
||
if precision + recall == 0:
|
||
f1 = 0
|
||
else:
|
||
f1 = 2 * precision * recall / (precision + recall) * batch_size
|
||
|
||
precisions.append(precision)
|
||
recalls.append(recall)
|
||
f1s.append(f1)
|
||
|
||
self._predictions.append({
|
||
'acc': acc,
|
||
'ap': ap,
|
||
'auc': auc,
|
||
'precisions': np.asarray(precisions),
|
||
'recalls': np.asarray(recalls),
|
||
'f1s': np.asarray(recalls),
|
||
'num_samples': batch_size
|
||
})
|
||
|
||
def evaluate(self):
|
||
if comm.get_world_size() > 1:
|
||
comm.synchronize()
|
||
predictions = comm.gather(self._predictions, dst=0)
|
||
predictions = list(itertools.chain(*predictions))
|
||
|
||
if not comm.is_main_process():
|
||
return {}
|
||
else:
|
||
predictions = self._predictions
|
||
|
||
total_acc = 0
|
||
total_ap = 0
|
||
total_auc = 0
|
||
total_precisions = np.zeros((len(self._threshold_list,)))
|
||
total_recalls = np.zeros((len(self._threshold_list,)))
|
||
total_f1s = np.zeros((len(self._threshold_list,)))
|
||
total_samples = 0
|
||
for prediction in predictions:
|
||
total_acc += prediction['acc']
|
||
total_ap += prediction['ap']
|
||
total_auc += prediction['auc']
|
||
total_precisions += prediction['precisions']
|
||
total_recalls += prediction['recalls']
|
||
total_f1s += prediction['f1s']
|
||
total_samples += prediction['num_samples']
|
||
|
||
acc = total_acc / total_samples
|
||
ap = total_ap / total_samples
|
||
auc = total_auc / total_samples
|
||
precisions = total_precisions / total_samples
|
||
recalls = total_recalls / total_samples
|
||
f1s = total_f1s / total_samples
|
||
|
||
self._results = OrderedDict()
|
||
self._results['Acc'] = acc
|
||
self._results['Ap'] = ap
|
||
self._results['Auc'] = auc
|
||
self._results['Thresholds'] = self._threshold_list
|
||
self._results['Precisions'] = precisions
|
||
self._results['Recalls'] = recalls
|
||
self._results['F1_Scores'] = f1s
|
||
|
||
return copy.deepcopy(self._results)
|
||
|