fast-reid/fastreid/evaluation/testing.py

103 lines
3.0 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import pprint
import sys
from collections import Mapping, OrderedDict
import numpy as np
from tabulate import tabulate
from termcolor import colored
def print_csv_format(results):
"""
Print main metrics in a format similar to Detectron2,
so that they are easy to copypaste into a spreadsheet.
Args:
results (OrderedDict): {metric -> score}
"""
# unordered results cannot be properly printed
assert isinstance(results, OrderedDict) or not len(results), results
logger = logging.getLogger(__name__)
dataset_name = results.pop('dataset')
metrics = ["Dataset"] + [k for k, v in results.items() if not isinstance(v, (list, np.ndarray))]
csv_results = [[dataset_name] + [v for v in results.values() if not isinstance(v, (list, np.ndarray))]]
# tabulate it
table = tabulate(
csv_results,
tablefmt="pipe",
floatfmt=".4f",
headers=metrics,
numalign="left",
)
logger.info("Evaluation results in csv format: \n" + colored(table, "cyan"))
# show precision, recall and f1 under given threshold
metrics = [k for k, v in results.items() if isinstance(v, (list, np.ndarray))]
csv_results = [v for v in results.values() if isinstance(v, (list, np.ndarray))]
csv_results = [v.tolist() if isinstance(v, np.ndarray) else v for v in csv_results]
csv_results = np.array(csv_results).T.tolist()
table = tabulate(
csv_results,
tablefmt="pipe",
floatfmt=".4f",
headers=metrics,
numalign="left",
)
logger.info("Evaluation results in csv format: \n" + colored(table, "cyan"))
def verify_results(cfg, results):
"""
Args:
results (OrderedDict[dict]): task_name -> {metric -> score}
Returns:
bool: whether the verification succeeds or not
"""
expected_results = cfg.TEST.EXPECTED_RESULTS
if not len(expected_results):
return True
ok = True
for task, metric, expected, tolerance in expected_results:
actual = results[task][metric]
if not np.isfinite(actual):
ok = False
diff = abs(actual - expected)
if diff > tolerance:
ok = False
logger = logging.getLogger(__name__)
if not ok:
logger.error("Result verification failed!")
logger.error("Expected Results: " + str(expected_results))
logger.error("Actual Results: " + pprint.pformat(results))
sys.exit(1)
else:
logger.info("Results verification passed.")
return ok
def flatten_results_dict(results):
"""
Expand a hierarchical dict of scalars into a flat dict of scalars.
If results[k1][k2][k3] = v, the returned dict will have the entry
{"k1/k2/k3": v}.
Args:
results (dict):
"""
r = {}
for k, v in results.items():
if isinstance(v, Mapping):
v = flatten_results_dict(v)
for kk, vv in v.items():
r[k + "/" + kk] = vv
else:
r[k] = v
return r