fast-reid/fastreid/evaluation/rank_cylib/rank_cy.pyx

261 lines
9.5 KiB
Cython

# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True
# credits: https://github.com/KaiyangZhou/deep-person-reid/blob/master/torchreid/metrics/rank_cylib/rank_cy.pyx
import cython
import numpy as np
cimport numpy as np
from collections import defaultdict
"""
Compiler directives:
https://github.com/cython/cython/wiki/enhancements-compilerdirectives
Cython tutorial:
https://cython.readthedocs.io/en/latest/src/userguide/numpy_tutorial.html
Credit to https://github.com/luzai
"""
# Main interface
cpdef evaluate_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=False):
distmat = np.asarray(distmat, dtype=np.float32)
q_pids = np.asarray(q_pids, dtype=np.int64)
g_pids = np.asarray(g_pids, dtype=np.int64)
q_camids = np.asarray(q_camids, dtype=np.int64)
g_camids = np.asarray(g_camids, dtype=np.int64)
if use_metric_cuhk03:
return eval_cuhk03_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
return eval_market1501_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
cpdef eval_cuhk03_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
cdef:
long num_repeats = 10
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] masked_raw_cmc = np.zeros(num_g, dtype=np.float32)
float[:] cmc, masked_cmc
long num_g_real, num_g_real_masked, rank_idx, rnd_idx
unsigned long meet_condition
float AP
long[:] kept_g_pids, mask
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
for g_idx in range(num_g):
order[g_idx] = indices[q_idx, g_idx]
num_g_real = 0
meet_condition = 0
kept_g_pids = np.zeros(num_g, dtype=np.int64)
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
kept_g_pids[num_g_real] = g_pids[order[g_idx]]
num_g_real += 1
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# cuhk03-specific setting
g_pids_dict = defaultdict(list) # overhead!
for g_idx in range(num_g_real):
g_pids_dict[kept_g_pids[g_idx]].append(g_idx)
cmc = np.zeros(max_rank, dtype=np.float32)
for _ in range(num_repeats):
mask = np.zeros(num_g_real, dtype=np.int64)
for _, idxs in g_pids_dict.items():
# randomly sample one image for each gallery person
rnd_idx = np.random.choice(idxs)
#rnd_idx = idxs[0] # use deterministic for debugging
mask[rnd_idx] = 1
num_g_real_masked = 0
for g_idx in range(num_g_real):
if mask[g_idx] == 1:
masked_raw_cmc[num_g_real_masked] = raw_cmc[g_idx]
num_g_real_masked += 1
masked_cmc = np.zeros(num_g, dtype=np.float32)
function_cumsum(masked_raw_cmc, masked_cmc, num_g_real_masked)
for g_idx in range(num_g_real_masked):
if masked_cmc[g_idx] > 1:
masked_cmc[g_idx] = 1
for rank_idx in range(max_rank):
cmc[rank_idx] += masked_cmc[rank_idx] / num_repeats
for rank_idx in range(max_rank):
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
num_rel += raw_cmc[g_idx]
all_AP[q_idx] = tmp_cmc_sum / num_rel
num_valid_q += 1.
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
for rank_idx in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
avg_cmc[rank_idx] /= num_valid_q
cdef float mAP = 0
for q_idx in range(num_q):
mAP += all_AP[q_idx]
mAP /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), mAP
cpdef eval_market1501_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
cdef:
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float[:] all_INP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] cmc = np.zeros(num_g, dtype=np.float32)
long max_pos_idx = 0
float inp
long num_g_real, rank_idx
unsigned long meet_condition
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
for g_idx in range(num_g):
order[g_idx] = indices[q_idx, g_idx]
num_g_real = 0
meet_condition = 0
# remove gallery samples that have the same pid and camid with query
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
num_g_real += 1
# this condition is true if query appear in gallery
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# compute cmc
function_cumsum(raw_cmc, cmc, num_g_real)
# compute mean inverse negative penalty
# reference : https://github.com/mangye16/ReID-Survey/blob/master/utils/reid_metric.py
max_pos_idx = 0
for g_idx in range(num_g_real):
if (raw_cmc[g_idx] == 1) and (g_idx > max_pos_idx):
max_pos_idx = g_idx
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP[q_idx] = inp
for g_idx in range(num_g_real):
if cmc[g_idx] > 1:
cmc[g_idx] = 1
for rank_idx in range(max_rank):
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
num_rel += raw_cmc[g_idx]
all_AP[q_idx] = tmp_cmc_sum / num_rel
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
for rank_idx in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
avg_cmc[rank_idx] /= num_valid_q
cdef float mAP = 0
cdef float mINP = 0
for q_idx in range(num_q):
mAP += all_AP[q_idx]
mINP += all_INP[q_idx]
mAP /= num_valid_q
mINP /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), mAP, mINP
# Compute the cumulative sum
cdef void function_cumsum(cython.numeric[:] src, cython.numeric[:] dst, long n):
cdef long i
dst[0] = src[0]
for i in range(1, n):
dst[i] = src[i] + dst[i - 1]