mirror of https://github.com/JDAI-CV/fast-reid.git
261 lines
9.5 KiB
Cython
261 lines
9.5 KiB
Cython
# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True
|
|
# credits: https://github.com/KaiyangZhou/deep-person-reid/blob/master/torchreid/metrics/rank_cylib/rank_cy.pyx
|
|
|
|
import cython
|
|
import numpy as np
|
|
cimport numpy as np
|
|
from collections import defaultdict
|
|
|
|
|
|
"""
|
|
Compiler directives:
|
|
https://github.com/cython/cython/wiki/enhancements-compilerdirectives
|
|
Cython tutorial:
|
|
https://cython.readthedocs.io/en/latest/src/userguide/numpy_tutorial.html
|
|
Credit to https://github.com/luzai
|
|
"""
|
|
|
|
|
|
# Main interface
|
|
cpdef evaluate_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=False):
|
|
distmat = np.asarray(distmat, dtype=np.float32)
|
|
q_pids = np.asarray(q_pids, dtype=np.int64)
|
|
g_pids = np.asarray(g_pids, dtype=np.int64)
|
|
q_camids = np.asarray(q_camids, dtype=np.int64)
|
|
g_camids = np.asarray(g_camids, dtype=np.int64)
|
|
if use_metric_cuhk03:
|
|
return eval_cuhk03_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
|
|
return eval_market1501_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
|
|
|
|
|
|
cpdef eval_cuhk03_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
|
|
long[:]q_camids, long[:]g_camids, long max_rank):
|
|
|
|
cdef long num_q = distmat.shape[0]
|
|
cdef long num_g = distmat.shape[1]
|
|
|
|
if num_g < max_rank:
|
|
max_rank = num_g
|
|
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
|
|
|
|
cdef:
|
|
long num_repeats = 10
|
|
long[:,:] indices = np.argsort(distmat, axis=1)
|
|
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
|
|
|
|
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
|
|
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
|
|
float num_valid_q = 0. # number of valid query
|
|
|
|
long q_idx, q_pid, q_camid, g_idx
|
|
long[:] order = np.zeros(num_g, dtype=np.int64)
|
|
long keep
|
|
|
|
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
|
|
float[:] masked_raw_cmc = np.zeros(num_g, dtype=np.float32)
|
|
float[:] cmc, masked_cmc
|
|
long num_g_real, num_g_real_masked, rank_idx, rnd_idx
|
|
unsigned long meet_condition
|
|
float AP
|
|
long[:] kept_g_pids, mask
|
|
|
|
float num_rel
|
|
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
|
|
float tmp_cmc_sum
|
|
|
|
for q_idx in range(num_q):
|
|
# get query pid and camid
|
|
q_pid = q_pids[q_idx]
|
|
q_camid = q_camids[q_idx]
|
|
|
|
# remove gallery samples that have the same pid and camid with query
|
|
for g_idx in range(num_g):
|
|
order[g_idx] = indices[q_idx, g_idx]
|
|
num_g_real = 0
|
|
meet_condition = 0
|
|
kept_g_pids = np.zeros(num_g, dtype=np.int64)
|
|
|
|
for g_idx in range(num_g):
|
|
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
|
|
raw_cmc[num_g_real] = matches[q_idx][g_idx]
|
|
kept_g_pids[num_g_real] = g_pids[order[g_idx]]
|
|
num_g_real += 1
|
|
if matches[q_idx][g_idx] > 1e-31:
|
|
meet_condition = 1
|
|
|
|
if not meet_condition:
|
|
# this condition is true when query identity does not appear in gallery
|
|
continue
|
|
|
|
# cuhk03-specific setting
|
|
g_pids_dict = defaultdict(list) # overhead!
|
|
for g_idx in range(num_g_real):
|
|
g_pids_dict[kept_g_pids[g_idx]].append(g_idx)
|
|
|
|
cmc = np.zeros(max_rank, dtype=np.float32)
|
|
for _ in range(num_repeats):
|
|
mask = np.zeros(num_g_real, dtype=np.int64)
|
|
|
|
for _, idxs in g_pids_dict.items():
|
|
# randomly sample one image for each gallery person
|
|
rnd_idx = np.random.choice(idxs)
|
|
#rnd_idx = idxs[0] # use deterministic for debugging
|
|
mask[rnd_idx] = 1
|
|
|
|
num_g_real_masked = 0
|
|
for g_idx in range(num_g_real):
|
|
if mask[g_idx] == 1:
|
|
masked_raw_cmc[num_g_real_masked] = raw_cmc[g_idx]
|
|
num_g_real_masked += 1
|
|
|
|
masked_cmc = np.zeros(num_g, dtype=np.float32)
|
|
function_cumsum(masked_raw_cmc, masked_cmc, num_g_real_masked)
|
|
for g_idx in range(num_g_real_masked):
|
|
if masked_cmc[g_idx] > 1:
|
|
masked_cmc[g_idx] = 1
|
|
|
|
for rank_idx in range(max_rank):
|
|
cmc[rank_idx] += masked_cmc[rank_idx] / num_repeats
|
|
|
|
for rank_idx in range(max_rank):
|
|
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
|
|
# compute average precision
|
|
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
|
|
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
|
|
num_rel = 0
|
|
tmp_cmc_sum = 0
|
|
for g_idx in range(num_g_real):
|
|
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
|
|
num_rel += raw_cmc[g_idx]
|
|
all_AP[q_idx] = tmp_cmc_sum / num_rel
|
|
num_valid_q += 1.
|
|
|
|
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
|
|
|
|
# compute averaged cmc
|
|
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
|
|
for rank_idx in range(max_rank):
|
|
for q_idx in range(num_q):
|
|
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
|
|
avg_cmc[rank_idx] /= num_valid_q
|
|
|
|
cdef float mAP = 0
|
|
for q_idx in range(num_q):
|
|
mAP += all_AP[q_idx]
|
|
mAP /= num_valid_q
|
|
|
|
return np.asarray(avg_cmc).astype(np.float32), mAP
|
|
|
|
|
|
cpdef eval_market1501_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
|
|
long[:]q_camids, long[:]g_camids, long max_rank):
|
|
|
|
cdef long num_q = distmat.shape[0]
|
|
cdef long num_g = distmat.shape[1]
|
|
|
|
if num_g < max_rank:
|
|
max_rank = num_g
|
|
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
|
|
|
|
cdef:
|
|
long[:,:] indices = np.argsort(distmat, axis=1)
|
|
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
|
|
|
|
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
|
|
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
|
|
float[:] all_INP = np.zeros(num_q, dtype=np.float32)
|
|
float num_valid_q = 0. # number of valid query
|
|
|
|
long q_idx, q_pid, q_camid, g_idx
|
|
long[:] order = np.zeros(num_g, dtype=np.int64)
|
|
long keep
|
|
|
|
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
|
|
float[:] cmc = np.zeros(num_g, dtype=np.float32)
|
|
long max_pos_idx = 0
|
|
float inp
|
|
long num_g_real, rank_idx
|
|
unsigned long meet_condition
|
|
|
|
float num_rel
|
|
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
|
|
float tmp_cmc_sum
|
|
|
|
for q_idx in range(num_q):
|
|
# get query pid and camid
|
|
q_pid = q_pids[q_idx]
|
|
q_camid = q_camids[q_idx]
|
|
|
|
for g_idx in range(num_g):
|
|
order[g_idx] = indices[q_idx, g_idx]
|
|
num_g_real = 0
|
|
meet_condition = 0
|
|
|
|
# remove gallery samples that have the same pid and camid with query
|
|
for g_idx in range(num_g):
|
|
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
|
|
raw_cmc[num_g_real] = matches[q_idx][g_idx]
|
|
num_g_real += 1
|
|
# this condition is true if query appear in gallery
|
|
if matches[q_idx][g_idx] > 1e-31:
|
|
meet_condition = 1
|
|
|
|
if not meet_condition:
|
|
# this condition is true when query identity does not appear in gallery
|
|
continue
|
|
|
|
# compute cmc
|
|
function_cumsum(raw_cmc, cmc, num_g_real)
|
|
# compute mean inverse negative penalty
|
|
# reference : https://github.com/mangye16/ReID-Survey/blob/master/utils/reid_metric.py
|
|
max_pos_idx = 0
|
|
for g_idx in range(num_g_real):
|
|
if (raw_cmc[g_idx] == 1) and (g_idx > max_pos_idx):
|
|
max_pos_idx = g_idx
|
|
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
|
|
all_INP[q_idx] = inp
|
|
|
|
for g_idx in range(num_g_real):
|
|
if cmc[g_idx] > 1:
|
|
cmc[g_idx] = 1
|
|
|
|
for rank_idx in range(max_rank):
|
|
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
|
|
num_valid_q += 1.
|
|
|
|
# compute average precision
|
|
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
|
|
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
|
|
num_rel = 0
|
|
tmp_cmc_sum = 0
|
|
for g_idx in range(num_g_real):
|
|
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
|
|
num_rel += raw_cmc[g_idx]
|
|
all_AP[q_idx] = tmp_cmc_sum / num_rel
|
|
|
|
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
|
|
|
|
# compute averaged cmc
|
|
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
|
|
for rank_idx in range(max_rank):
|
|
for q_idx in range(num_q):
|
|
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
|
|
avg_cmc[rank_idx] /= num_valid_q
|
|
|
|
cdef float mAP = 0
|
|
cdef float mINP = 0
|
|
for q_idx in range(num_q):
|
|
mAP += all_AP[q_idx]
|
|
mINP += all_INP[q_idx]
|
|
mAP /= num_valid_q
|
|
mINP /= num_valid_q
|
|
|
|
return np.asarray(avg_cmc).astype(np.float32), mAP, mINP
|
|
|
|
|
|
# Compute the cumulative sum
|
|
cdef void function_cumsum(cython.numeric[:] src, cython.numeric[:] dst, long n):
|
|
cdef long i
|
|
dst[0] = src[0]
|
|
for i in range(1, n):
|
|
dst[i] = src[i] + dst[i - 1] |