fast-reid/fastreid/modeling/meta_arch/mgn.py

208 lines
7.5 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import copy
import torch
import torch.nn.functional as F
from torch import nn
from .build import META_ARCH_REGISTRY
from ..backbones import build_backbone
from ..backbones.resnet import Bottleneck
from ..heads import build_reid_heads
from ..model_utils import weights_init_kaiming
from ...layers import GeneralizedMeanPoolingP, Flatten
@META_ARCH_REGISTRY.register()
class MGN(nn.Module):
def __init__(self, cfg):
super().__init__()
self._cfg = cfg
# backbone
backbone = build_backbone(cfg)
self.backbone = nn.Sequential(
backbone.conv1,
backbone.bn1,
backbone.relu,
backbone.maxpool,
backbone.layer1,
backbone.layer2,
backbone.layer3[0]
)
res_conv4 = nn.Sequential(*backbone.layer3[1:])
res_g_conv5 = backbone.layer4
res_p_conv5 = nn.Sequential(
Bottleneck(1024, 512, downsample=nn.Sequential(
nn.Conv2d(1024, 2048, 1, bias=False), nn.BatchNorm2d(2048))),
Bottleneck(2048, 512),
Bottleneck(2048, 512))
res_p_conv5.load_state_dict(backbone.layer4.state_dict())
if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool':
pool_layer = nn.AdaptiveAvgPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool':
pool_layer = nn.AdaptiveMaxPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool':
pool_layer = GeneralizedMeanPoolingP()
else:
pool_layer = nn.Identity()
# branch1
self.b1 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_g_conv5)
)
self.b1_pool = self._build_pool_reduce(pool_layer)
self.b1_head = build_reid_heads(cfg, 256, nn.Identity())
# branch2
self.b2 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)
)
self.b2_pool = self._build_pool_reduce(pool_layer)
self.b2_head = build_reid_heads(cfg, 256, nn.Identity())
self.b21_pool = self._build_pool_reduce(pool_layer)
self.b21_head = build_reid_heads(cfg, 256, nn.Identity())
self.b22_pool = self._build_pool_reduce(pool_layer)
self.b22_head = build_reid_heads(cfg, 256, nn.Identity())
# branch3
self.b3 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)
)
self.b3_pool = self._build_pool_reduce(pool_layer)
self.b3_head = build_reid_heads(cfg, 256, nn.Identity())
self.b31_pool = self._build_pool_reduce(pool_layer)
self.b31_head = build_reid_heads(cfg, 256, nn.Identity())
self.b32_pool = self._build_pool_reduce(pool_layer)
self.b32_head = build_reid_heads(cfg, 256, nn.Identity())
self.b33_pool = self._build_pool_reduce(pool_layer)
self.b33_head = build_reid_heads(cfg, 256, nn.Identity())
def _build_pool_reduce(self, pool_layer, input_dim=2048, reduce_dim=256):
pool_reduce = nn.Sequential(
pool_layer,
nn.Conv2d(input_dim, reduce_dim, 1, bias=False),
nn.BatchNorm2d(reduce_dim),
nn.ReLU(True),
Flatten()
)
pool_reduce.apply(weights_init_kaiming)
return pool_reduce
def forward(self, inputs):
images = inputs["images"]
targets = inputs["targets"]
if not self.training:
pred_feat = self.inference(images)
return pred_feat, targets, inputs["camid"]
features = self.backbone(images) # (bs, 2048, 16, 8)
# branch1
b1_feat = self.b1(features)
b1_pool_feat = self.b1_pool(b1_feat)
b1_logits, b1_pool_feat = self.b1_head(b1_pool_feat, targets)
# branch2
b2_feat = self.b2(features)
# global
b2_pool_feat = self.b2_pool(b2_feat)
b2_logits, b2_pool_feat = self.b2_head(b2_pool_feat, targets)
b21_feat, b22_feat = torch.chunk(b2_feat, 2, dim=2)
# part1
b21_pool_feat = self.b21_pool(b21_feat)
b21_logits, b21_pool_feat = self.b21_head(b21_pool_feat, targets)
# part2
b22_pool_feat = self.b22_pool(b22_feat)
b22_logits, b22_pool_feat = self.b22_head(b22_pool_feat, targets)
# branch3
b3_feat = self.b3(features)
# global
b3_pool_feat = self.b3_pool(b3_feat)
b3_logits, b3_pool_feat = self.b3_head(b3_pool_feat, targets)
b31_feat, b32_feat, b33_feat = torch.chunk(b3_feat, 3, dim=2)
# part1
b31_pool_feat = self.b31_pool(b31_feat)
b31_logits, b31_pool_feat = self.b31_head(b31_pool_feat, targets)
# part2
b32_pool_feat = self.b32_pool(b32_feat)
b32_logits, b32_pool_feat = self.b32_head(b32_pool_feat, targets)
# part3
b33_pool_feat = self.b33_pool(b33_feat)
b33_logits, b33_pool_feat = self.b33_head(b33_pool_feat, targets)
return (b1_logits, b2_logits, b3_logits, b21_logits, b22_logits, b31_logits, b32_logits, b33_logits), \
(b1_pool_feat, b2_pool_feat, b3_pool_feat), \
targets
def inference(self, images):
assert not self.training
features = self.backbone(images) # (bs, 2048, 16, 8)
# branch1
b1_feat = self.b1(features)
b1_pool_feat = self.b1_pool(b1_feat)
b1_pool_feat = self.b1_head(b1_pool_feat)
# branch2
b2_feat = self.b2(features)
# global
b2_pool_feat = self.b2_pool(b2_feat)
b2_pool_feat = self.b2_head(b2_pool_feat)
b21_feat, b22_feat = torch.chunk(b2_feat, 2, dim=2)
# part1
b21_pool_feat = self.b21_pool(b21_feat)
b21_pool_feat = self.b21_head(b21_pool_feat)
# part2
b22_pool_feat = self.b22_pool(b22_feat)
b22_pool_feat = self.b22_head(b22_pool_feat)
# branch3
b3_feat = self.b3(features)
# global
b3_pool_feat = self.b3_pool(b3_feat)
b3_pool_feat = self.b3_head(b3_pool_feat)
b31_feat, b32_feat, b33_feat = torch.chunk(b3_feat, 3, dim=2)
# part1
b31_pool_feat = self.b31_pool(b31_feat)
b31_pool_feat = self.b31_head(b31_pool_feat)
# part2
b32_pool_feat = self.b32_pool(b32_feat)
b32_pool_feat = self.b32_head(b32_pool_feat)
# part3
b33_pool_feat = self.b33_pool(b33_feat)
b33_pool_feat = self.b33_head(b33_pool_feat)
pred_feat = torch.cat([b1_pool_feat, b2_pool_feat, b3_pool_feat, b21_pool_feat,
b22_pool_feat, b31_pool_feat, b32_pool_feat, b33_pool_feat], dim=1)
return F.normalize(pred_feat)
def losses(self, outputs):
loss_dict = {}
loss_dict.update(self.b1_head.losses(self._cfg, outputs[0][0], outputs[1][0], outputs[2], 'b1_'))
loss_dict.update(self.b2_head.losses(self._cfg, outputs[0][1], outputs[1][1], outputs[2], 'b2_'))
loss_dict.update(self.b3_head.losses(self._cfg, outputs[0][2], outputs[1][2], outputs[2], 'b3_'))
loss_dict.update(self.b2_head.losses(self._cfg, outputs[0][3], None, outputs[2], 'b21_'))
loss_dict.update(self.b2_head.losses(self._cfg, outputs[0][4], None, outputs[2], 'b22_'))
loss_dict.update(self.b3_head.losses(self._cfg, outputs[0][5], None, outputs[2], 'b31_'))
loss_dict.update(self.b3_head.losses(self._cfg, outputs[0][6], None, outputs[2], 'b32_'))
loss_dict.update(self.b3_head.losses(self._cfg, outputs[0][7], None, outputs[2], 'b33_'))
return loss_dict