fast-reid/fastreid/utils/checkpoint.py

404 lines
14 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import collections
import copy
import logging
import os
from collections import defaultdict
from typing import Any
import numpy as np
import torch
import torch.nn as nn
from termcolor import colored
from torch.nn.parallel import DataParallel, DistributedDataParallel
from fastreid.utils.file_io import PathManager
class Checkpointer(object):
"""
A checkpointer that can save/load model as well as extra checkpointable
objects.
"""
def __init__(
self,
model: nn.Module,
save_dir: str = "",
*,
save_to_disk: bool = True,
**checkpointables: object,
):
"""
Args:
model (nn.Module): model.
save_dir (str): a directory to save and find checkpoints.
save_to_disk (bool): if True, save checkpoint to disk, otherwise
disable saving for this checkpointer.
checkpointables (object): any checkpointable objects, i.e., objects
that have the `state_dict()` and `load_state_dict()` method. For
example, it can be used like
`Checkpointer(model, "dir", optimizer=optimizer)`.
"""
if isinstance(model, (DistributedDataParallel, DataParallel)):
model = model.module
self.model = model
self.checkpointables = copy.copy(checkpointables)
self.logger = logging.getLogger(__name__)
self.save_dir = save_dir
self.save_to_disk = save_to_disk
def save(self, name: str, **kwargs: dict):
"""
Dump model and checkpointables to a file.
Args:
name (str): name of the file.
kwargs (dict): extra arbitrary data to save.
"""
if not self.save_dir or not self.save_to_disk:
return
data = {}
data["model"] = self.model.state_dict()
for key, obj in self.checkpointables.items():
data[key] = obj.state_dict()
data.update(kwargs)
basename = "{}.pth".format(name)
save_file = os.path.join(self.save_dir, basename)
assert os.path.basename(save_file) == basename, basename
self.logger.info("Saving checkpoint to {}".format(save_file))
with PathManager.open(save_file, "wb") as f:
torch.save(data, f)
self.tag_last_checkpoint(basename)
def load(self, path: str):
"""
Load from the given checkpoint. When path points to network file, this
function has to be called on all ranks.
Args:
path (str): path or url to the checkpoint. If empty, will not load
anything.
Returns:
dict:
extra data loaded from the checkpoint that has not been
processed. For example, those saved with
:meth:`.save(**extra_data)`.
"""
if not path:
# no checkpoint provided
self.logger.info(
"No checkpoint found. Initializing model from scratch"
)
return {}
self.logger.info("Loading checkpoint from {}".format(path))
if not os.path.isfile(path):
path = PathManager.get_local_path(path)
assert os.path.isfile(path), "Checkpoint {} not found!".format(path)
checkpoint = self._load_file(path)
self._load_model(checkpoint)
for key, obj in self.checkpointables.items():
if key in checkpoint:
self.logger.info("Loading {} from {}".format(key, path))
obj.load_state_dict(checkpoint.pop(key))
# return any further checkpoint data
return checkpoint
def has_checkpoint(self):
"""
Returns:
bool: whether a checkpoint exists in the target directory.
"""
save_file = os.path.join(self.save_dir, "last_checkpoint")
return PathManager.exists(save_file)
def get_checkpoint_file(self):
"""
Returns:
str: The latest checkpoint file in target directory.
"""
save_file = os.path.join(self.save_dir, "last_checkpoint")
try:
with PathManager.open(save_file, "r") as f:
last_saved = f.read().strip()
except IOError:
# if file doesn't exist, maybe because it has just been
# deleted by a separate process
return ""
return os.path.join(self.save_dir, last_saved)
def get_all_checkpoint_files(self):
"""
Returns:
list: All available checkpoint files (.pth files) in target
directory.
"""
all_model_checkpoints = [
os.path.join(self.save_dir, file)
for file in PathManager.ls(self.save_dir)
if PathManager.isfile(os.path.join(self.save_dir, file))
and file.endswith(".pth")
]
return all_model_checkpoints
def resume_or_load(self, path: str, *, resume: bool = True):
"""
If `resume` is True, this method attempts to resume from the last
checkpoint, if exists. Otherwise, load checkpoint from the given path.
This is useful when restarting an interrupted training job.
Args:
path (str): path to the checkpoint.
resume (bool): if True, resume from the last checkpoint if it exists.
Returns:
same as :meth:`load`.
"""
if resume and self.has_checkpoint():
path = self.get_checkpoint_file()
return self.load(path)
def tag_last_checkpoint(self, last_filename_basename: str):
"""
Tag the last checkpoint.
Args:
last_filename_basename (str): the basename of the last filename.
"""
save_file = os.path.join(self.save_dir, "last_checkpoint")
with PathManager.open(save_file, "w") as f:
f.write(last_filename_basename)
def _load_file(self, f: str):
"""
Load a checkpoint file. Can be overwritten by subclasses to support
different formats.
Args:
f (str): a locally mounted file path.
Returns:
dict: with keys "model" and optionally others that are saved by
the checkpointer dict["model"] must be a dict which maps strings
to torch.Tensor or numpy arrays.
"""
return torch.load(f, map_location=torch.device("cpu"))
def _load_model(self, checkpoint: Any):
"""
Load weights from a checkpoint.
Args:
checkpoint (Any): checkpoint contains the weights.
"""
checkpoint_state_dict = checkpoint.pop("model")
self._convert_ndarray_to_tensor(checkpoint_state_dict)
# if the state_dict comes from a model that was wrapped in a
# DataParallel or DistributedDataParallel during serialization,
# remove the "module" prefix before performing the matching.
_strip_prefix_if_present(checkpoint_state_dict, "module.")
# work around https://github.com/pytorch/pytorch/issues/24139
model_state_dict = self.model.state_dict()
for k in list(checkpoint_state_dict.keys()):
if k in model_state_dict:
shape_model = tuple(model_state_dict[k].shape)
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
if shape_model != shape_checkpoint:
self.logger.warning(
"'{}' has shape {} in the checkpoint but {} in the "
"model! Skipped.".format(
k, shape_checkpoint, shape_model
)
)
checkpoint_state_dict.pop(k)
incompatible = self.model.load_state_dict(
checkpoint_state_dict, strict=False
)
if incompatible.missing_keys:
self.logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
self.logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
def _convert_ndarray_to_tensor(self, state_dict: dict):
"""
In-place convert all numpy arrays in the state_dict to torch tensor.
Args:
state_dict (dict): a state-dict to be loaded to the model.
"""
# model could be an OrderedDict with _metadata attribute
# (as returned by Pytorch's state_dict()). We should preserve these
# properties.
for k in list(state_dict.keys()):
v = state_dict[k]
if not isinstance(v, np.ndarray) and not isinstance(
v, torch.Tensor
):
raise ValueError(
"Unsupported type found in checkpoint! {}: {}".format(
k, type(v)
)
)
if not isinstance(v, torch.Tensor):
state_dict[k] = torch.from_numpy(v)
class PeriodicCheckpointer:
"""
Save checkpoints periodically. When `.step(iteration)` is called, it will
execute `checkpointer.save` on the given checkpointer, if iteration is a
multiple of period or if `max_iter` is reached.
"""
def __init__(self, checkpointer: Any, period: int, max_iter: int = None):
"""
Args:
checkpointer (Any): the checkpointer object used to save
checkpoints.
period (int): the period to save checkpoint.
max_iter (int): maximum number of iterations. When it is reached,
a checkpoint named "model_final" will be saved.
"""
self.checkpointer = checkpointer
self.period = int(period)
self.max_iter = max_iter
def step(self, iteration: int, **kwargs: Any):
"""
Perform the appropriate action at the given iteration.
Args:
iteration (int): the current iteration, ranged in [0, max_iter-1].
kwargs (Any): extra data to save, same as in
:meth:`Checkpointer.save`.
"""
iteration = int(iteration)
additional_state = {"iteration": iteration}
additional_state.update(kwargs)
if (iteration + 1) % self.period == 0:
self.checkpointer.save(
"model_{:07d}".format(iteration), **additional_state
)
if iteration >= self.max_iter - 1:
self.checkpointer.save("model_final", **additional_state)
def save(self, name: str, **kwargs: Any):
"""
Same argument as :meth:`Checkpointer.save`.
Use this method to manually save checkpoints outside the schedule.
Args:
name (str): file name.
kwargs (Any): extra data to save, same as in
:meth:`Checkpointer.save`.
"""
self.checkpointer.save(name, **kwargs)
def get_missing_parameters_message(keys: list):
"""
Get a logging-friendly message to report parameter names (keys) that are in
the model but not found in a checkpoint.
Args:
keys (list[str]): List of keys that were not found in the checkpoint.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg = "Some model parameters are not in the checkpoint:\n"
msg += "\n".join(
" " + colored(k + _group_to_str(v), "blue") for k, v in groups.items()
)
return msg
def get_unexpected_parameters_message(keys: list):
"""
Get a logging-friendly message to report parameter names (keys) that are in
the checkpoint but not found in the model.
Args:
keys (list[str]): List of keys that were not found in the model.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg = "The checkpoint contains parameters not used by the model:\n"
msg += "\n".join(
" " + colored(k + _group_to_str(v), "magenta")
for k, v in groups.items()
)
return msg
def _strip_prefix_if_present(state_dict: collections.OrderedDict, prefix: str):
"""
Strip the prefix in metadata, if any.
Args:
state_dict (OrderedDict): a state-dict to be loaded to the model.
prefix (str): prefix.
"""
keys = sorted(state_dict.keys())
if not all(len(key) == 0 or key.startswith(prefix) for key in keys):
return
for key in keys:
newkey = key[len(prefix):]
state_dict[newkey] = state_dict.pop(key)
# also strip the prefix in metadata, if any..
try:
metadata = state_dict._metadata
except AttributeError:
pass
else:
for key in list(metadata.keys()):
# for the metadata dict, the key can be:
# '': for the DDP module, which we want to remove.
# 'module': for the actual model.
# 'module.xx.xx': for the rest.
if len(key) == 0:
continue
newkey = key[len(prefix):]
metadata[newkey] = metadata.pop(key)
def _group_checkpoint_keys(keys: list):
"""
Group keys based on common prefixes. A prefix is the string up to the final
"." in each key.
Args:
keys (list[str]): list of parameter names, i.e. keys in the model
checkpoint dict.
Returns:
dict[list]: keys with common prefixes are grouped into lists.
"""
groups = defaultdict(list)
for key in keys:
pos = key.rfind(".")
if pos >= 0:
head, tail = key[:pos], [key[pos + 1:]]
else:
head, tail = key, []
groups[head].extend(tail)
return groups
def _group_to_str(group: list):
"""
Format a group of parameter name suffixes into a loggable string.
Args:
group (list[str]): list of parameter name suffixes.
Returns:
str: formated string.
"""
if len(group) == 0:
return ""
if len(group) == 1:
return "." + group[0]
return ".{" + ", ".join(group) + "}"