fast-reid/projects/StrongBaseline/README.md

1.0 KiB

Strong Baseline in FastReID

Training

To train a model, run

CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yaml>

For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs, one should excute:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/baseline_ibn_market1501.yml'

Experimental Results

Market1501 dataset

Method Pretrained Rank@1 mAP mINP
BagTricks ImageNet 93.6% 85.1% 58.1%
BagTricks + Ibn-a ImageNet 94.8% 87.3% 63.5%

DukeMTMC dataset

Method Pretrained Rank@1 mAP mINP
BagTricks ImageNet 86.1% 75.9% 38.7%
BagTricks + Ibn-a ImageNet 89.0% 78.8% 43.6%

MSMT17 dataset

Method Pretrained Rank@1 mAP mINP
BagTricks ImageNet 70.4% 47.5% 9.6%
BagTricks + Ibn-a ImageNet 76.9% 55.0% 13.5%