mirror of https://github.com/JDAI-CV/fast-reid.git
183 lines
9.2 KiB
Markdown
183 lines
9.2 KiB
Markdown
# FastReID Model Zoo and Baselines
|
|
|
|
## Introduction
|
|
|
|
This file documents collection of baselines trained with fastreid. All numbers were obtained with 1 NVIDIA P40 GPU.
|
|
The software in use were PyTorch 1.4, CUDA 10.1.
|
|
|
|
In addition to these official baseline models, you can find more models in [projects/](https://github.com/JDAI-CV/fast-reid/tree/master/projects).
|
|
|
|
### How to Read the Tables
|
|
|
|
- The "Name" column contains a link to the config file.
|
|
Running `tools/train_net.py` with this config file and 1 GPU will reproduce the model.
|
|
- The *model id* column is provided for ease of reference. To check downloaded file integrity, any model on this page contains tis md5 prefix in its file name.
|
|
- Training curves and other statistics can be found in `metrics` for each model.
|
|
|
|
### Common Settings for all Person reid models
|
|
|
|
**BoT**:
|
|
|
|
[Bag of Tricks and A Strong Baseline for Deep Person Re-identification](http://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf). CVPRW2019, Oral.
|
|
|
|
**AGW**:
|
|
|
|
[ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey).
|
|
|
|
**MGN**:
|
|
|
|
[Learning Discriminative Features with Multiple Granularities for Person Re-Identification](https://arxiv.org/abs/1804.01438v1)
|
|
|
|
**SBS**:
|
|
|
|
stronger baseline on top of BoT:
|
|
|
|
Bag of Freebies(BoF):
|
|
|
|
1. Circle loss
|
|
2. Freeze backbone training
|
|
3. Cutout data augmentation & Auto Augmentation
|
|
4. Cosine annealing learning rate decay
|
|
5. Soft margin triplet loss
|
|
|
|
Bag of Specials(BoS):
|
|
|
|
1. Non-local block
|
|
2. GeM pooling
|
|
|
|
### Market1501 Baselines
|
|
|
|
**BoT**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---: |
|
|
| [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50.yml) | ImageNet | 94.4% | 86.1% | 59.4% | - |
|
|
| [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50-ibn.yml) | ImageNet | 94.9% | 87.6% | 64.1% | - |
|
|
| [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_S50.yml) | ImageNet | 95.1% | 88.5% | 66.0% | - |
|
|
| [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R101-ibn.yml) | ImageNet| 95.4% | 88.9% | 67.4% | - |
|
|
|
|
**AGW**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: |:---: |
|
|
| [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50.yml) | ImageNet | 95.3% | 88.2% | 66.3% | - |
|
|
| [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50-ibn.yml) | ImageNet | 95.1% | 88.7% | 67.1% | -|
|
|
| [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_S50.yml) | ImageNet | 94.7% | 87.1% | 62.2% | -|
|
|
| [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R101-ibn.yml) | ImageNet | 95.5% | 89.5% | 69.5% | - |
|
|
|
|
**SBS**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: |:---:|
|
|
| [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50.yml) | ImageNet | 95.4% | 88.2% | 64.8% | - |
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50-ibn.yml) | ImageNet | 95.7% | 89.3% | 67.5% | -|
|
|
| [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_S50.yml) | ImageNet | 95.0% | 87.0% | 60.6% | -|
|
|
| [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R101-ibn.yml) | ImageNet | 96.3% | 90.3% | 70.0% | -|
|
|
|
|
**MGN**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/mgn_R50-ibn.yml) | ImageNet | 95.8% | 89.7% | 67.0% | -|
|
|
|
|
### DukeMTMC Baseline
|
|
|
|
**BoT**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---: |
|
|
| [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50.yml) | ImageNet | 87.1% | 76.9% | 41.6% | - |
|
|
| [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50-ibn.yml) | ImageNet | 89.6% | 79.1% | 44.4% | - |
|
|
| [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_S50.yml) | ImageNet | 87.8% | 77.7% | 39.6% | - |
|
|
| [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R101-ibn.yml) | ImageNet| 91.1% | 81.3% | 47.7% | -|
|
|
|
|
**AGW**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50.yml) | ImageNet | 89.0% | 79.9% | 46.3% | - |
|
|
| [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50-ibn.yml) | ImageNet | 89.8% | 80.7% | 47.7% | - |
|
|
| [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_S50.yml) | ImageNet | 89.9% | 79.7% | 44.2% | -|
|
|
| [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R101-ibn.yml) | ImageNet | 91.4% | 82.1% | 50.2% | -|
|
|
|
|
**SBS**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50.yml) | ImageNet | 89.6% | 79.8% | 44.6% | -|
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50-ibn.yml) | ImageNet | 91.3% | 81.6% | 47.6% | -|
|
|
| [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_S50.yml) | ImageNet | 90.5% | 79.1% | 42.7% | -|
|
|
| [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R101-ibn.yml) | ImageNet | 92.4% | 83.2% | 49.7% | -|
|
|
|
|
**MGN**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/mgn_R50-ibn.yml) | ImageNet | 91.6% | 82.1% | 46.7% | - |
|
|
|
|
### MSMT17 Baseline
|
|
|
|
**BoT**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50.yml) | ImageNet | 72.3% | 48.3% | 9.7% | -|
|
|
| [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50-ibn.yml) | ImageNet | 77.0% | 54.4% | 12.5% | -|
|
|
| [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_S50.yml) | ImageNet | 80.4% | 59.2% | 15.9% | -|
|
|
| [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R101-ibn.yml) | ImageNet| 79.0% | 57.5% | 14.6% | -|
|
|
|
|
**AGW**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50.yml) | ImageNet | 76.7% | 53.6% | 12.2% | -|
|
|
| [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50-ibn.yml) | ImageNet | 79.3% | 57.5% | 14.3% | -|
|
|
| [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_S50.yml) | ImageNet | 77.3% | 54.7% | 12.6% | -|
|
|
| [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R101-ibn.yml) | ImageNet | 80.8% | 60.2% | 16.5% | -|
|
|
|
|
**SBS**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50.yml) | ImageNet | 83.3% | 59.9% | 14.6% | -|
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50-ibn.yml) | ImageNet | 84.0% | 61.2% | 15.5% | -|
|
|
| [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_S50.yml) | ImageNet | 82.6% | 58.2% | 13.2% | -|
|
|
| [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R101-ibn.yml) | ImageNet | 85.1% | 63.3% | 16.6% | -|
|
|
|
|
**MGN**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/mgn_R50-ibn.yml) | ImageNet | 85.1% | 65.4% | 18.4% | -|
|
|
|
|
### VeRi Baseline
|
|
|
|
**SBS**:
|
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| BoT(R50-ibn) | ImageNet | 97.0% | 81.9% | 46.3% | -|
|
|
|
|
### VehicleID Baseline
|
|
|
|
**BoT**:
|
|
Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin)
|
|
Test protocol: 10-fold cross-validation
|
|
|
|
| Testset size | Pretrained | Rank@1 | Rank@5 | download |
|
|
| :---: | :---: | :---: |:---: | :---:|
|
|
| Small(800) | ImageNet | 86.6% | 97.9% | -|
|
|
| Medium(1600) | ImageNet | 82.9% | 96.0% | -|
|
|
| Large(2400) | ImageNet | 80.6% | 93.9% | -|
|
|
|
|
### VERI-Wild Baseline
|
|
|
|
**BoT**:
|
|
Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin)
|
|
|
|
| Testset size | Pretrained | Rank@1 | mAP | mINP | download |
|
|
| :---: | :---: | :---: |:---: | :---: | :---:|
|
|
| Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% | -|
|
|
| Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% | -|
|
|
| Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% | -|
|