fast-reid/fastreid/data/datasets/prid.py

42 lines
1.2 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['PRID', ]
@DATASET_REGISTRY.register()
class PRID(ImageDataset):
"""PRID
"""
dataset_dir = "prid_2011"
dataset_name = 'prid'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir, 'slim_train')
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
for root, dirs, files in os.walk(train_path):
for img_name in filter(lambda x: x.endswith('.png'), files):
img_path = os.path.join(root, img_name)
pid = self.dataset_name + '_' + root.split('/')[-1].split('_')[1]
camid = self.dataset_name + '_' + img_name.split('_')[0]
data.append([img_path, pid, camid])
return data