mirror of https://github.com/JDAI-CV/fast-reid.git
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: xingyu liao
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import os
|
|
|
|
from fastreid.data.datasets import DATASET_REGISTRY
|
|
from fastreid.data.datasets.bases import ImageDataset
|
|
|
|
__all__ = ['PRID', ]
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class PRID(ImageDataset):
|
|
"""PRID
|
|
"""
|
|
dataset_dir = "prid_2011"
|
|
dataset_name = 'prid'
|
|
|
|
def __init__(self, root='datasets', **kwargs):
|
|
self.root = root
|
|
self.train_path = os.path.join(self.root, self.dataset_dir, 'slim_train')
|
|
|
|
required_files = [self.train_path]
|
|
self.check_before_run(required_files)
|
|
|
|
train = self.process_train(self.train_path)
|
|
|
|
super().__init__(train, [], [], **kwargs)
|
|
|
|
def process_train(self, train_path):
|
|
data = []
|
|
for root, dirs, files in os.walk(train_path):
|
|
for img_name in filter(lambda x: x.endswith('.png'), files):
|
|
img_path = os.path.join(root, img_name)
|
|
pid = self.dataset_name + '_' + root.split('/')[-1].split('_')[1]
|
|
camid = self.dataset_name + '_' + img_name.split('_')[0]
|
|
data.append([img_path, pid, camid])
|
|
return data
|