mirror of https://github.com/JDAI-CV/fast-reid.git
70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: Jinkai Zheng
|
|
@contact: 1315673509@qq.com
|
|
"""
|
|
|
|
import glob
|
|
import os.path as osp
|
|
import re
|
|
|
|
from .bases import ImageDataset
|
|
from ..datasets import DATASET_REGISTRY
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class VeRi(ImageDataset):
|
|
"""VeRi.
|
|
|
|
Reference:
|
|
Xinchen Liu et al. A Deep Learning based Approach for Progressive Vehicle Re-Identification. ECCV 2016.
|
|
Xinchen Liu et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance. IEEE TMM 2018.
|
|
|
|
URL: `<https://vehiclereid.github.io/VeRi/>`_
|
|
|
|
Dataset statistics:
|
|
- identities: 775.
|
|
- images: 37778 (train) + 1678 (query) + 11579 (gallery).
|
|
"""
|
|
dataset_dir = "veri"
|
|
dataset_name = "veri"
|
|
|
|
def __init__(self, root='datasets', **kwargs):
|
|
self.dataset_dir = osp.join(root, self.dataset_dir)
|
|
|
|
self.train_dir = osp.join(self.dataset_dir, 'image_train')
|
|
self.query_dir = osp.join(self.dataset_dir, 'image_query')
|
|
self.gallery_dir = osp.join(self.dataset_dir, 'image_test')
|
|
|
|
required_files = [
|
|
self.dataset_dir,
|
|
self.train_dir,
|
|
self.query_dir,
|
|
self.gallery_dir,
|
|
]
|
|
self.check_before_run(required_files)
|
|
|
|
train = self.process_dir(self.train_dir)
|
|
query = self.process_dir(self.query_dir, is_train=False)
|
|
gallery = self.process_dir(self.gallery_dir, is_train=False)
|
|
|
|
super(VeRi, self).__init__(train, query, gallery, **kwargs)
|
|
|
|
def process_dir(self, dir_path, is_train=True):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
pattern = re.compile(r'([\d]+)_c(\d\d\d)')
|
|
|
|
data = []
|
|
for img_path in img_paths:
|
|
pid, camid = map(int, pattern.search(img_path).groups())
|
|
if pid == -1: continue # junk images are just ignored
|
|
assert 0 <= pid <= 776
|
|
assert 1 <= camid <= 20
|
|
camid -= 1 # index starts from 0
|
|
if is_train:
|
|
pid = self.dataset_name + "_" + str(pid)
|
|
camid = self.dataset_name + "_" + str(camid)
|
|
data.append((img_path, pid, camid))
|
|
|
|
return data
|