fast-reid/fastreid/data/datasets/veri.py

70 lines
2.2 KiB
Python

# encoding: utf-8
"""
@author: Jinkai Zheng
@contact: 1315673509@qq.com
"""
import glob
import os.path as osp
import re
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class VeRi(ImageDataset):
"""VeRi.
Reference:
Xinchen Liu et al. A Deep Learning based Approach for Progressive Vehicle Re-Identification. ECCV 2016.
Xinchen Liu et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance. IEEE TMM 2018.
URL: `<https://vehiclereid.github.io/VeRi/>`_
Dataset statistics:
- identities: 775.
- images: 37778 (train) + 1678 (query) + 11579 (gallery).
"""
dataset_dir = "veri"
dataset_name = "veri"
def __init__(self, root='datasets', **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.train_dir = osp.join(self.dataset_dir, 'image_train')
self.query_dir = osp.join(self.dataset_dir, 'image_query')
self.gallery_dir = osp.join(self.dataset_dir, 'image_test')
required_files = [
self.dataset_dir,
self.train_dir,
self.query_dir,
self.gallery_dir,
]
self.check_before_run(required_files)
train = self.process_dir(self.train_dir)
query = self.process_dir(self.query_dir, is_train=False)
gallery = self.process_dir(self.gallery_dir, is_train=False)
super(VeRi, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, dir_path, is_train=True):
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
pattern = re.compile(r'([\d]+)_c(\d\d\d)')
data = []
for img_path in img_paths:
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 776
assert 1 <= camid <= 20
camid -= 1 # index starts from 0
if is_train:
pid = self.dataset_name + "_" + str(pid)
camid = self.dataset_name + "_" + str(camid)
data.append((img_path, pid, camid))
return data