mirror of https://github.com/JDAI-CV/fast-reid.git
169 lines
5.7 KiB
Python
169 lines
5.7 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils import model_zoo
|
|
|
|
model_urls = {
|
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
|
|
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
|
|
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
|
|
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
|
|
}
|
|
|
|
model_layers = {
|
|
'resnet50': [3, 4, 6, 3],
|
|
'resnet101': [3, 4, 23, 3]
|
|
}
|
|
|
|
__all__ = ['ResNet']
|
|
|
|
|
|
class IBN(nn.Module):
|
|
def __init__(self, planes):
|
|
super(IBN, self).__init__()
|
|
half1 = int(planes/8)
|
|
self.half = half1
|
|
half2 = planes - half1
|
|
self.IN = nn.InstanceNorm2d(half1, affine=True)
|
|
self.BN = nn.BatchNorm2d(half2)
|
|
|
|
def forward(self, x):
|
|
split = torch.split(x, self.half, 1)
|
|
out1 = self.IN(split[0].contiguous())
|
|
out2 = self.BN(torch.cat(split[1:], dim=1).contiguous())
|
|
out = torch.cat((out1, out2), 1)
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
if ibn:
|
|
self.bn1 = IBN(planes)
|
|
else:
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * 4)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, last_stride, ibn, block, layers):
|
|
scale = 64
|
|
self.inplanes = scale
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, scale, layers[0], ibn=ibn)
|
|
self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2, ibn=ibn)
|
|
self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2, ibn=ibn)
|
|
self.layer4 = self._make_layer(
|
|
block, scale*8, layers[3], stride=last_stride)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, ibn=False):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
if planes == 512:
|
|
ibn = False
|
|
layers.append(block(self.inplanes, planes, ibn, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, ibn))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
return x
|
|
|
|
def load_pretrain(self, model_path=''):
|
|
if model_path == '':
|
|
state_dict = model_zoo.load_url(model_urls[self._model_name])
|
|
state_dict.pop('fc.weight')
|
|
state_dict.pop('fc.bias')
|
|
else:
|
|
state_dict = torch.load(model_path)['state_dict']
|
|
state_dict.pop('module.fc.weight')
|
|
state_dict.pop('module.fc.bias')
|
|
new_state_dict = {}
|
|
for k in state_dict:
|
|
new_k = '.'.join(k.split('.')[1:]) # remove module in name
|
|
if self.state_dict()[new_k].shape == state_dict[k].shape:
|
|
new_state_dict[new_k] = state_dict[k]
|
|
state_dict = new_state_dict
|
|
self.load_state_dict(state_dict, strict=False)
|
|
|
|
def random_init(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
@classmethod
|
|
def from_name(cls, model_name, last_stride, ibn):
|
|
cls._model_name = model_name
|
|
return ResNet(last_stride, ibn=ibn, block=Bottleneck, layers=model_layers[model_name]) |