fast-reid/fastreid/modeling/meta_arch/pcb_oneline.py

71 lines
2.6 KiB
Python

# coding: utf-8
"""
Sun, Y. , Zheng, L. , Yang, Y. , Tian, Q. , & Wang, S. . (2017). Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). Springer, Cham.
实现和线上一模一样的PCB
"""
import torch
from fastreid.modeling.losses import cross_entropy_loss, log_accuracy
from fastreid.modeling.meta_arch import Baseline
from fastreid.modeling.meta_arch import META_ARCH_REGISTRY
@META_ARCH_REGISTRY.register()
class PcbOnline(Baseline):
def forward(self, batched_inputs):
# TODO: 减均值除方差
q = batched_inputs['q_img']
x = batched_inputs['p_img']
qf = self.cnn(q)
xf = self.cnn(x)
# L2 norm TODO: 查看具体数值,确定他到底是什么范数
qf = self._norm(qf)
xf = self._norm(xf)
qf_full, qf_part_0, qf_part_1, qf_part_2 = torch.split(qf, [2048, 512, 512, 512], dim=-1)
xf_full, xf_part_0, xf_part_1, xf_part_2 = torch.split(xf, [2048, 512, 512, 512], dim=-1)
m_full = self.dense_matching_full(
torch.cat([qf_full, xf_full, (qf_full - xf_full).abs(), qf_full * xf_full], dim=-1))
m_part_0 = self.dense_matching_part_0(
torch.cat([qf_part_0, xf_part_0, (qf_part_0 - xf_part_0).abs(), qf_part_0 * xf_part_0], dim=-1))
m_part_1 = self.dense_matching_part_1(
torch.cat([qf_part_1, xf_part_1, (qf_part_1 - xf_part_1).abs(), qf_part_1 * xf_part_1], dim=-1))
m_part_2 = self.dense_matching_part_2(
torch.cat([qf_part_2, xf_part_2, (qf_part_2 - xf_part_2).abs(), qf_part_2 * xf_part_2], dim=-1))
m_all = self.dense_matching_all(torch.cat([m_full, m_part_0, m_part_1, m_part_2], dim=-1))
return m_all.squeeze()
def losses(self, outputs, gt_labels):
"""
Compute loss from modeling's outputs, the loss function input arguments
must be the same as the outputs of the model forwarding.
"""
# model predictions
pred_class_logits = outputs['pred_class_logits'].detach()
cls_outputs = outputs['cls_outputs']
# Log prediction accuracy
log_accuracy(pred_class_logits, gt_labels)
loss_dict = {}
loss_names = self.loss_kwargs['loss_names']
if 'CrossEntropyLoss' in loss_names:
ce_kwargs = self.loss_kwargs.get('ce')
loss_dict['loss_cls'] = cross_entropy_loss(
cls_outputs,
gt_labels,
ce_kwargs.get('eps'),
ce_kwargs.get('alpha')
) * ce_kwargs.get('scale')
return loss_dict