fast-reid/fastreid/evaluation/reid_evaluation.py

119 lines
3.9 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import copy
import logging
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
from sklearn import metrics
from fastreid.utils import comm
from fastreid.utils.compute_dist import build_dist
from .evaluator import DatasetEvaluator
from .query_expansion import aqe
from .rank import evaluate_rank
from .roc import evaluate_roc
logger = logging.getLogger(__name__)
class ReidEvaluator(DatasetEvaluator):
def __init__(self, cfg, num_query, output_dir=None):
self.cfg = cfg
self._num_query = num_query
self._output_dir = output_dir
self.features = []
self.pids = []
self.camids = []
def reset(self):
self.features = []
self.pids = []
self.camids = []
def process(self, inputs, outputs):
self.pids.extend(inputs["targets"])
self.camids.extend(inputs["camids"])
self.features.append(outputs.cpu())
def evaluate(self):
if comm.get_world_size() > 1:
comm.synchronize()
features = comm.gather(self.features)
features = sum(features, [])
pids = comm.gather(self.pids)
pids = sum(pids, [])
camids = comm.gather(self.camids)
camids = sum(camids, [])
# fmt: off
if not comm.is_main_process(): return {}
# fmt: on
else:
features = self.features
pids = self.pids
camids = self.camids
features = torch.cat(features, dim=0)
# query feature, person ids and camera ids
query_features = features[:self._num_query]
query_pids = np.asarray(pids[:self._num_query])
query_camids = np.asarray(camids[:self._num_query])
# gallery features, person ids and camera ids
gallery_features = features[self._num_query:]
gallery_pids = np.asarray(pids[self._num_query:])
gallery_camids = np.asarray(camids[self._num_query:])
self._results = OrderedDict()
if self.cfg.TEST.AQE.ENABLED:
logger.info("Test with AQE setting")
qe_time = self.cfg.TEST.AQE.QE_TIME
qe_k = self.cfg.TEST.AQE.QE_K
alpha = self.cfg.TEST.AQE.ALPHA
query_features, gallery_features = aqe(query_features, gallery_features, qe_time, qe_k, alpha)
dist = build_dist(query_features, gallery_features, self.cfg.TEST.METRIC)
if self.cfg.TEST.RERANK.ENABLED:
logger.info("Test with rerank setting")
k1 = self.cfg.TEST.RERANK.K1
k2 = self.cfg.TEST.RERANK.K2
lambda_value = self.cfg.TEST.RERANK.LAMBDA
if self.cfg.TEST.METRIC == "cosine":
query_features = F.normalize(query_features, dim=1)
gallery_features = F.normalize(gallery_features, dim=1)
rerank_dist = build_dist(query_features, gallery_features, metric="jaccard", k1=k1, k2=k2)
dist = rerank_dist * (1 - lambda_value) + dist * lambda_value
cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids)
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
for r in [1, 5, 10]:
self._results['Rank-{}'.format(r)] = cmc[r - 1] * 100
self._results['mAP'] = mAP * 100
self._results['mINP'] = mINP * 100
self._results["metric"] = (mAP + cmc[0]) / 2 * 100
if self.cfg.TEST.ROC_ENABLED:
scores, labels = evaluate_roc(dist, query_pids, gallery_pids, query_camids, gallery_camids)
fprs, tprs, thres = metrics.roc_curve(labels, scores)
for fpr in [1e-4, 1e-3, 1e-2]:
ind = np.argmin(np.abs(fprs - fpr))
self._results["TPR@FPR={:.0e}".format(fpr)] = tprs[ind]
return copy.deepcopy(self._results)