fast-reid/projects/FastClas/train_net.py

128 lines
3.6 KiB
Python

#!/usr/bin/env python
# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import json
import logging
import os
import sys
sys.path.append('.')
from fastreid.config import get_cfg
from fastreid.engine import default_argument_parser, default_setup, launch
from fastreid.data.build import build_reid_train_loader, build_reid_test_loader
from fastreid.evaluation.clas_evaluator import ClasEvaluator
from fastreid.utils.checkpoint import Checkpointer, PathManager
from fastreid.utils import comm
from fastreid.engine import DefaultTrainer
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.transforms import build_transforms
from fastreid.data.build import _root
from fastclas import *
class ClasTrainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
"""
Returns:
iterable
It now calls :func:`fastreid.data.build_reid_train_loader`.
Overwrite it if you'd like a different data loader.
"""
logger = logging.getLogger("fastreid.clas_dataset")
logger.info("Prepare training set")
train_items = list()
for d in cfg.DATASETS.NAMES:
data = DATASET_REGISTRY.get(d)(root=_root)
if comm.is_main_process():
data.show_train()
train_items.extend(data.train)
transforms = build_transforms(cfg, is_train=True)
train_set = ClasDataset(train_items, transforms)
data_loader = build_reid_train_loader(cfg, train_set=train_set)
# Save index to class dictionary
output_dir = cfg.OUTPUT_DIR
if comm.is_main_process() and output_dir:
path = os.path.join(output_dir, "idx2class.json")
with PathManager.open(path, "w") as f:
json.dump(train_set.idx_to_class, f)
return data_loader
@classmethod
def build_test_loader(cls, cfg, dataset_name):
"""
Returns:
iterable
It now calls :func:`fastreid.data.build_reid_test_loader`.
Overwrite it if you'd like a different data loader.
"""
data = DATASET_REGISTRY.get(dataset_name)(root=_root)
if comm.is_main_process():
data.show_test()
transforms = build_transforms(cfg, is_train=False)
test_set = ClasDataset(data.query, transforms)
data_loader, _ = build_reid_test_loader(cfg, test_set=test_set)
return data_loader
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_dir=None):
data_loader = cls.build_test_loader(cfg, dataset_name)
return data_loader, ClasEvaluator(cfg, output_dir)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
cfg.defrost()
cfg.MODEL.BACKBONE.PRETRAIN = False
model = ClasTrainer.build_model(cfg)
Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model
res = ClasTrainer.test(cfg, model)
return res
trainer = ClasTrainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)