mirror of https://github.com/JDAI-CV/fast-reid.git
2.6 KiB
2.6 KiB
Bag of Tricks and A Strong ReID Baseline in FastReID
Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.
Hao Luo* Youzhi Gu* Xingyu Liao* Shenqi Lai
A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. IEEE Transactions on Multimedia (Accepted).
[Journal Version(TMM)] [PDF] [Slides] [Poster]
Training
To train a model, run
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yml>
For example, to launch a end-to-end baseline training on market1501 dataset on GPU#1, one should excute:
CUDA_VISIBLE_DEVICES=1 python train_net.py --config-file='configs/bagtricks_market1501.yml'
Evaluation
To evaluate the model in test set, run similarly:
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <configs.yaml> --eval-only MODEL.WEIGHTS model.pth
Experimental Results
You can reproduce the results by simply excute
sh scripts/train_market.sh
sh scripts/train_duke.sh
sh scripts/train_msmt.sh
Market1501 dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BagTricks | ImageNet | 93.9% | 84.9% | 57.1% |
DukeMTMC dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BagTricks | ImageNet | 87.1% | 76.4% | 39.2% |
MSMT17 dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BagTricks | ImageNet | 72.2% | 48.4% | 9.6% |
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}
@ARTICLE{Luo_2019_Strong_TMM,
author={H. {Luo} and W. {Jiang} and Y. {Gu} and F. {Liu} and X. {Liao} and S. {Lai} and J. {Gu}},
journal={IEEE Transactions on Multimedia},
title={A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification},
year={2019},
pages={1-1},
doi={10.1109/TMM.2019.2958756},
ISSN={1941-0077},
}