mirror of https://github.com/JDAI-CV/fast-reid.git
update stronger baseline results on Market1501, DukeMTMC and MSMT17 |
||
---|---|---|
.. | ||
configs | ||
scripts | ||
README.md | ||
train_net.py |
README.md
Stronger Baseline in FastReID
Training
To train a model, run
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yaml>
For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs, one should excute:
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/sbs_market1501.yml'
Experimental Results
stronger baseline tricks:
- Non-local block
- GeM pooling
- Circle loss
- Freeze backbone training
- Cutout data augmentation & Auto Augmentation
- Cosine annealing learning rate decay
- Soft margin triplet loss
Market1501 dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
stronger baseline(ResNet50-ibn) | ImageNet | 95.5 | 88.4 | 65.8 |
Robust-ReID | ImageNet | 96.2 | 89.7 | - |
DukeMTMC dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
stronger baseline(ResNet50-ibn) | ImageNet | 91.3 | 81.6 | 47.6 |
Robust-ReID | ImageNet | 89.8 | 80.3 | - |
MSMT17 dataset
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
stronger baseline(ResNet50-ibn) | ImageNet | 84.2 | 61.5 | 15.7 |
ABD-Net | ImageNet | 82.3 | 60.8 | - |