fast-reid/data/samplers/triplet_sampler.py

109 lines
3.6 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: liaoxingyu2@jd.com
"""
from collections import defaultdict
import random
import copy
import numpy as np
import re
import torch
from torch.utils.data.sampler import Sampler
class RandomIdentitySampler(Sampler):
"""
Randomly sample N identities, then for each identity,
randomly sample K instances, therefore batch size is N*K.
Args:
- data_source (list): list of (img_path, pid, camid).
- num_instances (int): number of instances per identity in a batch.
- batch_size (int): number of examples in a batch.
"""
def __init__(self, data_source, batch_size, num_instances):
pat = re.compile(r'([-\d]+)_c(\d)')
self.data_source = data_source
self.batch_size = batch_size
self.num_instances = num_instances
self.num_pids_per_batch = self.batch_size // self.num_instances
self.index_dic = defaultdict(list)
for index, fname in enumerate(self.data_source):
prefix = fname.split('/')[1]
try:
pid, _ = pat.search(fname).groups()
except:
prefix = fname.split('/')[4]
pid = '_'.join(fname.split('/')[-1].split('_')[:2])
pid = prefix + '_' + pid
self.index_dic[pid].append(index)
self.pids = list(self.index_dic.keys())
# estimate number of examples in an epoch
self.length = 0
for pid in self.pids:
idxs = self.index_dic[pid]
num = len(idxs)
if num < self.num_instances:
num = self.num_instances
self.length += num - num % self.num_instances
def __iter__(self):
batch_idxs_dict = defaultdict(list)
for pid in self.pids:
idxs = copy.deepcopy(self.index_dic[pid])
if len(idxs) < self.num_instances:
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
random.shuffle(idxs)
batch_idxs = []
for idx in idxs:
batch_idxs.append(idx)
if len(batch_idxs) == self.num_instances:
batch_idxs_dict[pid].append(batch_idxs)
batch_idxs = []
avai_pids = copy.deepcopy(self.pids)
final_idxs = []
while len(avai_pids) >= self.num_pids_per_batch:
selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
for pid in selected_pids:
batch_idxs = batch_idxs_dict[pid].pop(0)
final_idxs.extend(batch_idxs)
if len(batch_idxs_dict[pid]) == 0:
avai_pids.remove(pid)
return iter(final_idxs)
def __len__(self):
return self.length
# class RandomIdentitySampler(Sampler):
# def __init__(self, data_source, num_instances=4):
# self.data_source = data_source
# self.num_instances = num_instances
# self.index_dic = defaultdict(list)
# for index, (_, pid) in enumerate(data_source):
# self.index_dic[pid].append(index)
# self.pids = list(self.index_dic.keys())
# self.num_identities = len(self.pids)
#
# def __iter__(self):
# indices = torch.randperm(self.num_identities)
# ret = []
# for i in indices:
# pid = self.pids[i]
# t = self.index_dic[pid]
# replace = False if len(t) >= self.num_instances else True
# t = np.random.choice(t, size=self.num_instances, replace=replace)
# ret.extend(t)
# return iter(ret)
#
# def __len__(self):
# return self.num_identities * self.num_instances