fast-reid/tools/train.py

95 lines
2.6 KiB
Python

# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import argparse
import sys
import os
from bisect import bisect_right
from torch.backends import cudnn
sys.path.append('.')
from config import cfg
from data import get_data_bunch
from engine.trainer import do_train
from layers import make_loss
from modeling import build_model
from utils.logger import setup_logger
from fastai.vision import *
def train(cfg):
# prepare dataset
data_bunch, test_labels, num_query = get_data_bunch(cfg)
# prepare model
model = build_model(cfg, data_bunch.c)
# state_dict = torch.load("logs/beijing/market_duke_softmax_triplet_256_128_bs512/models/model_149.pth")
# model.load_params_wo_fc(state_dict['model'])
opt_func = partial(torch.optim.Adam)
def warmup_multistep(start: float, end: float, pct: float):
warmup_factor = 1
gamma = cfg.SOLVER.GAMMA
milestones = [1.0 * s / cfg.SOLVER.MAX_EPOCHS for s in cfg.SOLVER.STEPS]
warmup_iter = 1.0 * cfg.SOLVER.WARMUP_ITERS / cfg.SOLVER.MAX_EPOCHS
if pct < warmup_iter:
alpha = pct / warmup_iter
warmup_factor = cfg.SOLVER.WARMUP_FACTOR * (1 - alpha) + alpha
return start * warmup_factor * gamma ** bisect_right(milestones, pct)
lr = cfg.SOLVER.BASE_LR * (cfg.SOLVER.IMS_PER_BATCH // 64)
lr_sched = Scheduler(lr, cfg.SOLVER.MAX_EPOCHS, warmup_multistep)
loss_func = make_loss(cfg)
do_train(
cfg,
model,
data_bunch,
test_labels,
opt_func,
lr_sched,
loss_func,
num_query
)
def main():
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument('-cfg',
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
if not os.path.exists(cfg.OUTPUT_DIR): os.makedirs(cfg.OUTPUT_DIR)
logger = setup_logger("reid_baseline", cfg.OUTPUT_DIR, 0)
logger.info("Using {} GPUs.".format(num_gpus))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
logger.info("Running with config:\n{}".format(cfg))
cudnn.benchmark = True
train(cfg)
if __name__ == '__main__':
main()