fast-reid/fastreid/modeling/heads/linear_head.py

53 lines
1.5 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from torch import nn
from .build import REID_HEADS_REGISTRY
from .. import losses as Loss
from ..model_utils import weights_init_classifier
from ...layers import Flatten
@REID_HEADS_REGISTRY.register()
class LinearHead(nn.Module):
def __init__(self, cfg, in_feat, pool_layer=nn.AdaptiveAvgPool2d(1)):
super().__init__()
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.pool_layer = nn.Sequential(
pool_layer,
Flatten()
)
self.classifier = nn.Linear(in_feat, self._num_classes, bias=False)
self.classifier.apply(weights_init_classifier)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
global_feat = self.pool_layer(features)
if not self.training:
return global_feat
# training
pred_class_logits = self.classifier(global_feat)
return pred_class_logits, global_feat
@classmethod
def losses(cls, cfg, pred_class_logits, global_features, gt_classes, prefix='') -> dict:
loss_dict = {}
for loss_name in cfg.MODEL.LOSSES.NAME:
loss = getattr(Loss, loss_name)(cfg)(pred_class_logits, global_features, gt_classes)
loss_dict.update(loss)
# rename
name_loss_dict = {}
for name in loss_dict.keys():
name_loss_dict[prefix + name] = loss_dict[name]
del loss_dict
return name_loss_dict