fast-reid/fastreid/modeling/losses/cross_entroy_loss.py

61 lines
2.0 KiB
Python

# encoding: utf-8
"""
@author: l1aoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch
import torch.nn.functional as F
from ...utils.events import get_event_storage
class CrossEntropyLoss(object):
"""
A class that stores information and compute losses about outputs of a Baseline head.
"""
def __init__(self, cfg):
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self._epsilon = cfg.MODEL.LOSSES.EPSILON
self._smooth_on = cfg.MODEL.LOSSES.SMOOTH_ON
self._scale = cfg.MODEL.LOSSES.SCALE_CE
self._topk = (1,)
def _log_accuracy(self, pred_class_logits, gt_classes):
"""
Log the accuracy metrics to EventStorage.
"""
bsz = pred_class_logits.size(0)
maxk = max(self._topk)
_, pred_class = pred_class_logits.topk(maxk, 1, True, True)
pred_class = pred_class.t()
correct = pred_class.eq(gt_classes.view(1, -1).expand_as(pred_class))
ret = []
for k in self._topk:
correct_k = correct[:k].view(-1).float().sum(dim=0, keepdim=True)
ret.append(correct_k.mul_(1. / bsz))
storage = get_event_storage()
storage.put_scalar("cls_accuracy", ret[0])
def __call__(self, pred_class_logits, _, gt_classes):
"""
Compute the softmax cross entropy loss for box classification.
Returns:
scalar Tensor
"""
self._log_accuracy(pred_class_logits, gt_classes)
if self._smooth_on:
log_probs = F.log_softmax(pred_class_logits, dim=1)
targets = torch.zeros(log_probs.size()).scatter_(1, gt_classes.unsqueeze(1).data.cpu(), 1)
targets = targets.to(pred_class_logits.device)
targets = (1 - self._epsilon) * targets + self._epsilon / self._num_classes
loss = (-targets * log_probs).mean(0).sum()
else:
loss = F.cross_entropy(pred_class_logits, gt_classes, reduction="mean")
return {
"loss_cls": loss * self._scale,
}