mirror of https://github.com/JDAI-CV/fast-reid.git
93 lines
3.3 KiB
Python
93 lines
3.3 KiB
Python
# encoding: utf-8
|
||
"""
|
||
@author: xingyu liao
|
||
@contact: sherlockliao01@gmail.com
|
||
"""
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
|
||
|
||
# based on:
|
||
# https://github.com/kornia/kornia/blob/master/kornia/losses/focal.py
|
||
|
||
def focal_loss(
|
||
input: torch.Tensor,
|
||
target: torch.Tensor,
|
||
alpha: float,
|
||
gamma: float = 2.0,
|
||
reduction: str = 'mean') -> torch.Tensor:
|
||
r"""Criterion that computes Focal loss.
|
||
See :class:`fastreid.modeling.losses.FocalLoss` for details.
|
||
According to [1], the Focal loss is computed as follows:
|
||
.. math::
|
||
\text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
|
||
where:
|
||
- :math:`p_t` is the model's estimated probability for each class.
|
||
Arguments:
|
||
alpha (float): Weighting factor :math:`\alpha \in [0, 1]`.
|
||
gamma (float): Focusing parameter :math:`\gamma >= 0`.
|
||
reduction (str, optional): Specifies the reduction to apply to the
|
||
output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied,
|
||
‘mean’: the sum of the output will be divided by the number of elements
|
||
in the output, ‘sum’: the output will be summed. Default: ‘none’.
|
||
Shape:
|
||
- Input: :math:`(N, C, *)` where C = number of classes.
|
||
- Target: :math:`(N, *)` where each value is
|
||
:math:`0 ≤ targets[i] ≤ C−1`.
|
||
Examples:
|
||
>>> N = 5 # num_classes
|
||
>>> loss = FocalLoss(cfg)
|
||
>>> input = torch.randn(1, N, 3, 5, requires_grad=True)
|
||
>>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N)
|
||
>>> output = loss(input, target)
|
||
>>> output.backward()
|
||
References:
|
||
[1] https://arxiv.org/abs/1708.02002
|
||
"""
|
||
if not torch.is_tensor(input):
|
||
raise TypeError("Input type is not a torch.Tensor. Got {}"
|
||
.format(type(input)))
|
||
|
||
if not len(input.shape) >= 2:
|
||
raise ValueError("Invalid input shape, we expect BxCx*. Got: {}"
|
||
.format(input.shape))
|
||
|
||
if input.size(0) != target.size(0):
|
||
raise ValueError('Expected input batch_size ({}) to match target batch_size ({}).'
|
||
.format(input.size(0), target.size(0)))
|
||
|
||
n = input.size(0)
|
||
out_size = (n,) + input.size()[2:]
|
||
if target.size()[1:] != input.size()[2:]:
|
||
raise ValueError('Expected target size {}, got {}'.format(
|
||
out_size, target.size()))
|
||
|
||
if not input.device == target.device:
|
||
raise ValueError(
|
||
"input and target must be in the same device. Got: {}".format(
|
||
input.device, target.device))
|
||
|
||
# compute softmax over the classes axis
|
||
input_soft = F.softmax(input, dim=1)
|
||
|
||
# create the labels one hot tensor
|
||
target_one_hot = F.one_hot(target, num_classes=input.shape[1])
|
||
|
||
# compute the actual focal loss
|
||
weight = torch.pow(-input_soft + 1., gamma)
|
||
|
||
focal = -alpha * weight * torch.log(input_soft)
|
||
loss_tmp = torch.sum(target_one_hot * focal, dim=1)
|
||
|
||
if reduction == 'none':
|
||
loss = loss_tmp
|
||
elif reduction == 'mean':
|
||
loss = torch.mean(loss_tmp)
|
||
elif reduction == 'sum':
|
||
loss = torch.sum(loss_tmp)
|
||
else:
|
||
raise NotImplementedError("Invalid reduction mode: {}"
|
||
.format(reduction))
|
||
return loss
|