mirror of https://github.com/JDAI-CV/fast-reid.git
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
from typing import List
|
|
|
|
import torch
|
|
from torch.optim.lr_scheduler import *
|
|
|
|
|
|
class WarmupLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer: torch.optim.Optimizer,
|
|
warmup_factor: float = 0.1,
|
|
warmup_iters: int = 1000,
|
|
warmup_method: str = "linear",
|
|
last_epoch: int = -1,
|
|
):
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self) -> List[float]:
|
|
warmup_factor = _get_warmup_factor_at_epoch(
|
|
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
|
|
)
|
|
return [
|
|
base_lr * warmup_factor for base_lr in self.base_lrs
|
|
]
|
|
|
|
def _compute_values(self) -> List[float]:
|
|
# The new interface
|
|
return self.get_lr()
|
|
|
|
|
|
def _get_warmup_factor_at_epoch(
|
|
method: str, iter: int, warmup_iters: int, warmup_factor: float
|
|
) -> float:
|
|
"""
|
|
Return the learning rate warmup factor at a specific iteration.
|
|
See https://arxiv.org/abs/1706.02677 for more details.
|
|
Args:
|
|
method (str): warmup method; either "constant" or "linear".
|
|
iter (int): iter at which to calculate the warmup factor.
|
|
warmup_iters (int): the number of warmup epochs.
|
|
warmup_factor (float): the base warmup factor (the meaning changes according
|
|
to the method used).
|
|
Returns:
|
|
float: the effective warmup factor at the given iteration.
|
|
"""
|
|
if iter >= warmup_iters:
|
|
return 1.0
|
|
|
|
if method == "constant":
|
|
return warmup_factor
|
|
elif method == "linear":
|
|
alpha = iter / warmup_iters
|
|
return warmup_factor * (1 - alpha) + alpha
|
|
elif method == "exp":
|
|
return warmup_factor ** (1 - iter / warmup_iters)
|
|
else:
|
|
raise ValueError("Unknown warmup method: {}".format(method))
|