fast-reid/fastreid/layers/non_local.py

55 lines
1.9 KiB
Python

# encoding: utf-8
import torch
from torch import nn
from .batch_norm import get_norm
class Non_local(nn.Module):
def __init__(self, in_channels, bn_norm, num_splits, reduc_ratio=2):
super(Non_local, self).__init__()
self.in_channels = in_channels
self.inter_channels = reduc_ratio // reduc_ratio
self.g = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.W = nn.Sequential(
nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0),
get_norm(bn_norm, self.in_channels, num_splits),
)
nn.init.constant_(self.W[1].weight, 0.0)
nn.init.constant_(self.W[1].bias, 0.0)
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
'''
:param x: (b, t, h, w)
:return x: (b, t, h, w)
'''
batch_size = x.size(0)
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
f = torch.matmul(theta_x, phi_x)
N = f.size(-1)
f_div_C = f / N
y = torch.matmul(f_div_C, g_x)
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
W_y = self.W(y)
z = W_y + x
return z