2020-08-06 17:26:21 +08:00
..
2020-08-06 17:26:21 +08:00
2020-08-06 16:24:37 +08:00
2020-08-06 17:26:21 +08:00
2020-08-06 16:24:37 +08:00

Distillation ReID

This project provides a training script of small model for both fast inference and high accuracy.

Datasets Prepration

  • Market1501
  • DukeMTMC-reID
  • MSMT-17

Train and Evaluation

# train BagTricksIBN101 as teacher model
CUDA_VISIBLE_DEVICES=$CUDA python ./tools/train_net.py --config-file ./projects/DistillReID/configs-ibn/bagtricks_R101-ibn.yml MODEL.DEVICE "cuda:0"
# train BagTricksIBN18 as student model
CUDA_VISIBLE_DEVICES=$CUDA python ./projects/DistillReID/train_net.py --kd --config-file ./projects/DistillReID/configs-ibn/KD-bot34ibn-bot18ibn.yml MODEL.DEVICE "cuda:0"

Experimental Reuslts and Pre-trained Model

Rank-1 (mAP) / Q.Time Student (BagTricks)
IBN-101 IBN-50 IBN-34 IBN-18
Teacher
(BagTricks)
IBN-101 90.8(80.8)/0.3395s 90.8(81.1)/0.1784s 89.63(78.9)/0.1760s 86.96(75.75)/0.0654s
IBN-50 - 89.8(79.8)/0.2264s 88.82(78.9)/0.0864s 87.75(76.18)/0.0838s
IBN-34 - - 88.64(76.4)/0.1766s
IBN-18 - - - 85.50(71.60)/0.1178s