fast-reid/fastreid/evaluation/reid_evaluation.py

101 lines
3.6 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import logging
import copy
from collections import OrderedDict
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
from .evaluator import DatasetEvaluator
from .rank import evaluate_rank
from .rerank import re_ranking
from .query_expansion import aqe
logger = logging.getLogger(__name__)
class ReidEvaluator(DatasetEvaluator):
def __init__(self, cfg, num_query, output_dir=None):
self.cfg = cfg
self._num_query = num_query
self._output_dir = output_dir
self.features = []
self.pids = []
self.camids = []
def reset(self):
self.features = []
self.pids = []
self.camids = []
def process(self, outputs):
self.features.append(outputs[0].cpu())
self.pids.extend(outputs[1].cpu().numpy())
self.camids.extend(outputs[2].cpu().numpy())
@staticmethod
def cal_dist(metric: str, query_feat: torch.tensor, gallery_feat: torch.tensor):
assert metric in ["cosine", "euclidean"], "must choose from [cosine, euclidean], but got {}".format(metric)
if metric == "cosine":
query_feat = F.normalize(query_feat, dim=1)
gallery_feat = F.normalize(gallery_feat, dim=1)
dist = 1 - torch.mm(query_feat, gallery_feat.t())
else:
m, n = query_feat.size(0), gallery_feat.size(0)
xx = torch.pow(query_feat, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(gallery_feat, 2).sum(1, keepdim=True).expand(n, m).t()
dist = xx + yy
dist.addmm_(1, -2, query_feat, gallery_feat.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
return dist.cpu().numpy()
def evaluate(self):
features = torch.cat(self.features, dim=0)
# query feature, person ids and camera ids
query_features = features[:self._num_query]
query_pids = np.asarray(self.pids[:self._num_query])
query_camids = np.asarray(self.camids[:self._num_query])
# gallery features, person ids and camera ids
gallery_features = features[self._num_query:]
gallery_pids = np.asarray(self.pids[self._num_query:])
gallery_camids = np.asarray(self.camids[self._num_query:])
self._results = OrderedDict()
if self.cfg.TEST.AQE.ENABLED:
logger.info("Test with AQE setting")
qe_time = self.cfg.TEST.AQE.QE_TIME
qe_k = self.cfg.TEST.AQE.QE_K
alpha = self.cfg.TEST.AQE.ALPHA
query_features, gallery_features = aqe(query_features, gallery_features, qe_time, qe_k, alpha)
dist = self.cal_dist(self.cfg.TEST.METRIC, query_features, gallery_features)
if self.cfg.TEST.RERANK.ENABLED:
logger.info("Test with rerank setting")
k1 = self.cfg.TEST.RERANK.K1
k2 = self.cfg.TEST.RERANK.K1
lambda_value = self.cfg.TEST.RERANK.LAMBDA
q_q_dist = self.cal_dist(self.cfg.TEST.METRIC, query_features, query_features)
g_g_dist = self.cal_dist(self.cfg.TEST.METRIC, gallery_features, gallery_features)
dist = re_ranking(dist, q_q_dist, g_g_dist, k1, k2, lambda_value)
cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids)
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
for r in [1, 5, 10]:
self._results['Rank-{}'.format(r)] = cmc[r - 1]
self._results['mAP'] = mAP
self._results['mINP'] = mINP
return copy.deepcopy(self._results)