mirror of https://github.com/JDAI-CV/fast-reid.git
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
"""
|
|
Creates a MobileNetV2 Model as defined in:
|
|
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. (2018).
|
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
|
arXiv preprint arXiv:1801.04381.
|
|
import from https://github.com/tonylins/pytorch-mobilenet-v2
|
|
"""
|
|
import logging
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from fastreid.layers import get_norm
|
|
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
|
|
from .build import BACKBONE_REGISTRY
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None):
|
|
"""
|
|
This function is taken from the original tf repo.
|
|
It ensures that all layers have a channel number that is divisible by 8
|
|
It can be seen here:
|
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
|
:param v:
|
|
:param divisor:
|
|
:param min_value:
|
|
:return:
|
|
"""
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
# Make sure that round down does not go down by more than 10%.
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
def conv_3x3_bn(inp, oup, stride, bn_norm):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
get_norm(bn_norm, oup),
|
|
nn.ReLU6(inplace=True)
|
|
)
|
|
|
|
|
|
def conv_1x1_bn(inp, oup, bn_norm):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
get_norm(bn_norm, oup),
|
|
nn.ReLU6(inplace=True)
|
|
)
|
|
|
|
|
|
class InvertedResidual(nn.Module):
|
|
def __init__(self, inp, oup, bn_norm, stride, expand_ratio):
|
|
super(InvertedResidual, self).__init__()
|
|
assert stride in [1, 2]
|
|
|
|
hidden_dim = round(inp * expand_ratio)
|
|
self.identity = stride == 1 and inp == oup
|
|
|
|
if expand_ratio == 1:
|
|
self.conv = nn.Sequential(
|
|
# dw
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
get_norm(bn_norm, hidden_dim),
|
|
nn.ReLU6(inplace=True),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
get_norm(bn_norm, oup),
|
|
)
|
|
else:
|
|
self.conv = nn.Sequential(
|
|
# pw
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
|
get_norm(bn_norm, hidden_dim),
|
|
nn.ReLU6(inplace=True),
|
|
# dw
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
get_norm(bn_norm, hidden_dim),
|
|
nn.ReLU6(inplace=True),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.identity:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
class MobileNetV2(nn.Module):
|
|
def __init__(self, bn_norm, width_mult=1.):
|
|
super(MobileNetV2, self).__init__()
|
|
# setting of inverted residual blocks
|
|
self.cfgs = [
|
|
# t, c, n, s
|
|
[1, 16, 1, 1],
|
|
[6, 24, 2, 2],
|
|
[6, 32, 3, 2],
|
|
[6, 64, 4, 2],
|
|
[6, 96, 3, 1],
|
|
[6, 160, 3, 2],
|
|
[6, 320, 1, 1],
|
|
]
|
|
|
|
# building first layer
|
|
input_channel = _make_divisible(32 * width_mult, 4 if width_mult == 0.1 else 8)
|
|
layers = [conv_3x3_bn(3, input_channel, 2, bn_norm)]
|
|
# building inverted residual blocks
|
|
block = InvertedResidual
|
|
for t, c, n, s in self.cfgs:
|
|
output_channel = _make_divisible(c * width_mult, 4 if width_mult == 0.1 else 8)
|
|
for i in range(n):
|
|
layers.append(block(input_channel, output_channel, bn_norm, s if i == 0 else 1, t))
|
|
input_channel = output_channel
|
|
self.features = nn.Sequential(*layers)
|
|
# building last several layers
|
|
output_channel = _make_divisible(1280 * width_mult, 4 if width_mult == 0.1 else 8) if width_mult > 1.0 else 1280
|
|
self.conv = conv_1x1_bn(input_channel, output_channel, bn_norm)
|
|
|
|
self._initialize_weights()
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
def _initialize_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0, 0.01)
|
|
m.bias.data.zero_()
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_mobilenetv2_backbone(cfg):
|
|
"""
|
|
Create a MobileNetV2 instance from config.
|
|
Returns:
|
|
MobileNetV2: a :class: `MobileNetV2` instance.
|
|
"""
|
|
# fmt: off
|
|
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
|
|
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
|
|
bn_norm = cfg.MODEL.BACKBONE.NORM
|
|
depth = cfg.MODEL.BACKBONE.DEPTH
|
|
# fmt: on
|
|
|
|
width_mult = {
|
|
"1.0x": 1.0,
|
|
"0.75x": 0.75,
|
|
"0.5x": 0.5,
|
|
"0.35x": 0.35,
|
|
'0.25x': 0.25,
|
|
'0.1x': 0.1,
|
|
}[depth]
|
|
|
|
model = MobileNetV2(bn_norm, width_mult)
|
|
|
|
if pretrain:
|
|
try:
|
|
state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
|
|
logger.info(f"Loading pretrained model from {pretrain_path}")
|
|
except FileNotFoundError as e:
|
|
logger.info(f'{pretrain_path} is not found! Please check this path.')
|
|
raise e
|
|
except KeyError as e:
|
|
logger.info("State dict keys error! Please check the state dict.")
|
|
raise e
|
|
|
|
incompatible = model.load_state_dict(state_dict, strict=False)
|
|
if incompatible.missing_keys:
|
|
logger.info(
|
|
get_missing_parameters_message(incompatible.missing_keys)
|
|
)
|
|
if incompatible.unexpected_keys:
|
|
logger.info(
|
|
get_unexpected_parameters_message(incompatible.unexpected_keys)
|
|
)
|
|
|
|
return model
|