fast-reid/projects/FastShoe/fastshoe/data/shoe_dataset.py

78 lines
2.3 KiB
Python

# -*- coding: utf-8 -*-
# @Time : 2021/10/8 16:55:30
# @Author : zuchen.wang@vipshop.com
# @File : shoe_dataset.py
import logging
import json
from tabulate import tabulate
from termcolor import colored
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
@DATASET_REGISTRY.register()
class ShoeDataset(ImageDataset):
def __init__(self, img_dir: str, anno_path: str, **kwargs):
self._logger = logging.getLogger(__name__)
self.img_dir = img_dir
self.anno_path = anno_path
all_data = json.load(open(self.anno_path))
pos_folders = []
neg_folders = []
for data in all_data:
pos_folders.append(data['positive_img_list'])
neg_folders.append(data['negative_img_list'])
assert len(pos_folders) == len(neg_folders), self._logger.error('the len of self.pos_foders should be equal to self.pos_foders')
super().__init__(pos_folders, neg_folders, None, **kwargs)
def get_num_pids(self, data):
return len(data)
def get_num_cams(self, data):
return 1
def parse_data(self, data):
pids = 0
imgs = set()
for info in data:
pids += 1
imgs.intersection_update(info)
return pids, len(imgs)
def show_train(self):
num_train_pids, num_train_images = self.parse_data(self.train)
headers = ['subset', '# folders', '# images']
csv_results = [['train', num_train_pids, num_train_images]]
# tabulate it
table = tabulate(
csv_results,
tablefmt="pipe",
headers=headers,
numalign="left",
)
self._logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
def show_test(self):
num_query_pids, num_query_images = self.parse_data(self.query)
headers = ['subset', '# ids', '# images', '# cameras']
csv_results = [['query', num_query_pids, num_query_pids, num_query_images]]
# tabulate it
table = tabulate(
csv_results,
tablefmt="pipe",
headers=headers,
numalign="left",
)
self._logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))