mirror of https://github.com/JDAI-CV/fast-reid.git
366 lines
15 KiB
Python
366 lines
15 KiB
Python
# encoding: utf-8
|
|
# based on:
|
|
# https://github.com/zhanghang1989/ResNeSt/blob/master/resnest/torch/resnest.py
|
|
"""ResNeSt models"""
|
|
|
|
import logging
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from fastreid.layers import SplAtConv2d, get_norm, DropBlock2D
|
|
from fastreid.utils.checkpoint import get_unexpected_parameters_message, get_missing_parameters_message
|
|
from .build import BACKBONE_REGISTRY
|
|
|
|
logger = logging.getLogger(__name__)
|
|
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth'
|
|
|
|
_model_sha256 = {name: checksum for checksum, name in [
|
|
('528c19ca', 'resnest50'),
|
|
('22405ba7', 'resnest101'),
|
|
('75117900', 'resnest200'),
|
|
('0cc87c48', 'resnest269'),
|
|
]}
|
|
|
|
|
|
def short_hash(name):
|
|
if name not in _model_sha256:
|
|
raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
|
|
return _model_sha256[name][:8]
|
|
|
|
|
|
model_urls = {name: _url_format.format(name, short_hash(name)) for
|
|
name in _model_sha256.keys()
|
|
}
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""ResNet Bottleneck
|
|
"""
|
|
# pylint: disable=unused-argument
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
radix=1, cardinality=1, bottleneck_width=64,
|
|
avd=False, avd_first=False, dilation=1, is_first=False,
|
|
rectified_conv=False, rectify_avg=False,
|
|
norm_layer=None, dropblock_prob=0.0, last_gamma=False):
|
|
super(Bottleneck, self).__init__()
|
|
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
|
|
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
|
|
self.bn1 = get_norm(norm_layer, group_width)
|
|
self.dropblock_prob = dropblock_prob
|
|
self.radix = radix
|
|
self.avd = avd and (stride > 1 or is_first)
|
|
self.avd_first = avd_first
|
|
|
|
if self.avd:
|
|
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
|
|
stride = 1
|
|
|
|
if dropblock_prob > 0.0:
|
|
self.dropblock1 = DropBlock2D(dropblock_prob, 3)
|
|
if radix == 1:
|
|
self.dropblock2 = DropBlock2D(dropblock_prob, 3)
|
|
self.dropblock3 = DropBlock2D(dropblock_prob, 3)
|
|
|
|
if radix >= 1:
|
|
self.conv2 = SplAtConv2d(
|
|
group_width, group_width, kernel_size=3,
|
|
stride=stride, padding=dilation,
|
|
dilation=dilation, groups=cardinality, bias=False,
|
|
radix=radix, rectify=rectified_conv,
|
|
rectify_avg=rectify_avg,
|
|
norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
elif rectified_conv:
|
|
from rfconv import RFConv2d
|
|
self.conv2 = RFConv2d(
|
|
group_width, group_width, kernel_size=3, stride=stride,
|
|
padding=dilation, dilation=dilation,
|
|
groups=cardinality, bias=False,
|
|
average_mode=rectify_avg)
|
|
self.bn2 = get_norm(norm_layer, group_width)
|
|
else:
|
|
self.conv2 = nn.Conv2d(
|
|
group_width, group_width, kernel_size=3, stride=stride,
|
|
padding=dilation, dilation=dilation,
|
|
groups=cardinality, bias=False)
|
|
self.bn2 = get_norm(norm_layer, group_width)
|
|
|
|
self.conv3 = nn.Conv2d(
|
|
group_width, planes * 4, kernel_size=1, bias=False)
|
|
self.bn3 = get_norm(norm_layer, planes * 4)
|
|
|
|
if last_gamma:
|
|
from torch.nn.init import zeros_
|
|
zeros_(self.bn3.weight)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.dilation = dilation
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
if self.dropblock_prob > 0.0:
|
|
out = self.dropblock1(out)
|
|
out = self.relu(out)
|
|
|
|
if self.avd and self.avd_first:
|
|
out = self.avd_layer(out)
|
|
|
|
out = self.conv2(out)
|
|
if self.radix == 0:
|
|
out = self.bn2(out)
|
|
if self.dropblock_prob > 0.0:
|
|
out = self.dropblock2(out)
|
|
out = self.relu(out)
|
|
|
|
if self.avd and not self.avd_first:
|
|
out = self.avd_layer(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
if self.dropblock_prob > 0.0:
|
|
out = self.dropblock3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNeSt(nn.Module):
|
|
"""ResNet Variants
|
|
Parameters
|
|
----------
|
|
block : Block
|
|
Class for the residual block. Options are BasicBlockV1, BottleneckV1.
|
|
layers : list of int
|
|
Numbers of layers in each block
|
|
classes : int, default 1000
|
|
Number of classification classes.
|
|
dilated : bool, default False
|
|
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
|
|
typically used in Semantic Segmentation.
|
|
norm_layer : object
|
|
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
|
|
for Synchronized Cross-GPU BachNormalization).
|
|
Reference:
|
|
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
|
|
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
|
|
"""
|
|
|
|
# pylint: disable=unused-variable
|
|
def __init__(self, last_stride, block, layers, radix=1, groups=1, bottleneck_width=64,
|
|
dilated=False, dilation=1,
|
|
deep_stem=False, stem_width=64, avg_down=False,
|
|
rectified_conv=False, rectify_avg=False,
|
|
avd=False, avd_first=False,
|
|
final_drop=0.0, dropblock_prob=0,
|
|
last_gamma=False, norm_layer="BN"):
|
|
if last_stride == 1: dilation = 2
|
|
|
|
self.cardinality = groups
|
|
self.bottleneck_width = bottleneck_width
|
|
# ResNet-D params
|
|
self.inplanes = stem_width * 2 if deep_stem else 64
|
|
self.avg_down = avg_down
|
|
self.last_gamma = last_gamma
|
|
# ResNeSt params
|
|
self.radix = radix
|
|
self.avd = avd
|
|
self.avd_first = avd_first
|
|
|
|
super().__init__()
|
|
self.rectified_conv = rectified_conv
|
|
self.rectify_avg = rectify_avg
|
|
if rectified_conv:
|
|
from rfconv import RFConv2d
|
|
conv_layer = RFConv2d
|
|
else:
|
|
conv_layer = nn.Conv2d
|
|
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {}
|
|
if deep_stem:
|
|
self.conv1 = nn.Sequential(
|
|
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs),
|
|
get_norm(norm_layer, stem_width),
|
|
nn.ReLU(inplace=True),
|
|
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
|
|
get_norm(norm_layer, stem_width),
|
|
nn.ReLU(inplace=True),
|
|
conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
|
|
)
|
|
else:
|
|
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
|
|
bias=False, **conv_kwargs)
|
|
self.bn1 = get_norm(norm_layer, self.inplanes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
|
|
if dilated or dilation == 4:
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
|
|
dilation=2, norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
|
|
dilation=4, norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
elif dilation == 2:
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
|
dilation=1, norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
|
|
dilation=2, norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
else:
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
|
norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
|
|
norm_layer=norm_layer,
|
|
dropblock_prob=dropblock_prob)
|
|
self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
|
|
dropblock_prob=0.0, is_first=True):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
down_layers = []
|
|
if self.avg_down:
|
|
if dilation == 1:
|
|
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
|
|
ceil_mode=True, count_include_pad=False))
|
|
else:
|
|
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
|
|
ceil_mode=True, count_include_pad=False))
|
|
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=1, bias=False))
|
|
else:
|
|
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False))
|
|
down_layers.append(get_norm(norm_layer, planes * block.expansion))
|
|
downsample = nn.Sequential(*down_layers)
|
|
|
|
layers = []
|
|
if dilation == 1 or dilation == 2:
|
|
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
|
|
radix=self.radix, cardinality=self.cardinality,
|
|
bottleneck_width=self.bottleneck_width,
|
|
avd=self.avd, avd_first=self.avd_first,
|
|
dilation=1, is_first=is_first, rectified_conv=self.rectified_conv,
|
|
rectify_avg=self.rectify_avg,
|
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
|
|
last_gamma=self.last_gamma))
|
|
elif dilation == 4:
|
|
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
|
|
radix=self.radix, cardinality=self.cardinality,
|
|
bottleneck_width=self.bottleneck_width,
|
|
avd=self.avd, avd_first=self.avd_first,
|
|
dilation=2, is_first=is_first, rectified_conv=self.rectified_conv,
|
|
rectify_avg=self.rectify_avg,
|
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
|
|
last_gamma=self.last_gamma))
|
|
else:
|
|
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
|
|
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes,
|
|
radix=self.radix, cardinality=self.cardinality,
|
|
bottleneck_width=self.bottleneck_width,
|
|
avd=self.avd, avd_first=self.avd_first,
|
|
dilation=dilation, rectified_conv=self.rectified_conv,
|
|
rectify_avg=self.rectify_avg,
|
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
|
|
last_gamma=self.last_gamma))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
return x
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_resnest_backbone(cfg):
|
|
"""
|
|
Create a ResNest instance from config.
|
|
Returns:
|
|
ResNet: a :class:`ResNet` instance.
|
|
"""
|
|
|
|
# fmt: off
|
|
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
|
|
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
|
|
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
|
|
bn_norm = cfg.MODEL.BACKBONE.NORM
|
|
depth = cfg.MODEL.BACKBONE.DEPTH
|
|
# fmt: on
|
|
|
|
num_blocks_per_stage = {
|
|
"50x": [3, 4, 6, 3],
|
|
"101x": [3, 4, 23, 3],
|
|
"200x": [3, 24, 36, 3],
|
|
"269x": [3, 30, 48, 8],
|
|
}[depth]
|
|
|
|
stem_width = {
|
|
"50x": 32,
|
|
"101x": 64,
|
|
"200x": 64,
|
|
"269x": 64,
|
|
}[depth]
|
|
|
|
model = ResNeSt(last_stride, Bottleneck, num_blocks_per_stage,
|
|
radix=2, groups=1, bottleneck_width=64,
|
|
deep_stem=True, stem_width=stem_width, avg_down=True,
|
|
avd=True, avd_first=False, norm_layer=bn_norm)
|
|
if pretrain:
|
|
# Load pretrain path if specifically
|
|
if pretrain_path:
|
|
try:
|
|
state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
|
|
logger.info(f"Loading pretrained model from {pretrain_path}")
|
|
except FileNotFoundError as e:
|
|
logger.info(f'{pretrain_path} is not found! Please check this path.')
|
|
raise e
|
|
except KeyError as e:
|
|
logger.info("State dict keys error! Please check the state dict.")
|
|
raise e
|
|
else:
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
model_urls['resnest' + depth[:-1]], progress=True, check_hash=True, map_location=torch.device('cpu'))
|
|
|
|
incompatible = model.load_state_dict(state_dict, strict=False)
|
|
if incompatible.missing_keys:
|
|
logger.info(
|
|
get_missing_parameters_message(incompatible.missing_keys)
|
|
)
|
|
if incompatible.unexpected_keys:
|
|
logger.info(
|
|
get_unexpected_parameters_message(incompatible.unexpected_keys)
|
|
)
|
|
return model
|