SOTA Re-identification Methods and Toolbox
 
 
 
 
 
Go to file
sherlock 66d2ce8bf6 update triplet 2018-09-19 18:17:06 +08:00
configs update triplet 2018-09-19 18:17:06 +08:00
core update triplet 2018-09-19 18:17:06 +08:00
network update triplet 2018-09-19 18:17:06 +08:00
scripts update triplet 2018-09-19 18:17:06 +08:00
tools update triplet 2018-09-19 18:17:06 +08:00
utils update triplet 2018-09-19 18:17:06 +08:00
.gitignore update readme 2018-06-15 17:49:47 +08:00
README.md update triplet 2018-09-19 18:17:06 +08:00

README.md

ReID_baseline

Baseline model (with bottleneck) for person ReID (using softmax and triplet loss). This is PyTorch version, mxnet version has a better result and more SOTA methods.

We support

  • multi-GPU training
  • easy dataset preparation
  • end-to-end training and evaluation

Get Started

  1. cd to folder where you want to download this repo

  2. Run git clone https://github.com/L1aoXingyu/reid_baseline.git

  3. Install dependencies:

  4. Prepare dataset

    Create a directory to store reid datasets under this repo via

    cd reid_baseline
    mkdir data
    
    1. Download dataset to data/ from http://www.liangzheng.org/Project/project_reid.html
    2. Extract dataset and rename to market1501. The data structure would like:
    market1501/
        bounding_box_test/
        bounding_box_train/
    
  5. Prepare pretrained model if you don't have

    from torchvision import models
    models.resnet50(pretrained=True)
    

    Then it will automatically download model in ~.torch/models/, you should set this path in config.py

Train

You can run

bash scripts/train_triplet_softmax.sh

in reid_baseline folder if you want to train with softmax and triplet loss. You can find others train scripts in scripts.

Results

network architecture ResNet50 -> global avg pooling -> BN(freeze beta) -> softmax (triplet)

config Market1501 CUHK03
bs(32) size(384,128) softmax 92.2 (78.5)
bs(64) size(384,128) softmax 92.5 (79.6)
bs(32) size(256,128) softmax 92.0 (78.4)
bs(64) size(256,128) softmax 91.7 (78.3)
triplet 88.8% 74.8%
triplet + softmax 92.0% 78.1%