mirror of https://github.com/JDAI-CV/fast-reid.git
273 lines
16 KiB
C++
273 lines
16 KiB
C++
#include <vector>
|
|
#include <iostream>
|
|
#include "fastrt/utils.h"
|
|
#include "fastrt/layers.h"
|
|
#include "fastrt/sbs_resnet.h"
|
|
using namespace trtxapi;
|
|
|
|
namespace fastrt {
|
|
|
|
ILayer* backbone_sbsR34_distill::topology(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) {
|
|
std::string ibn{""};
|
|
if(_modelCfg.with_ibna) {
|
|
ibn = "a";
|
|
}
|
|
std::map<std::string, std::vector<std::string>> ibn_layers{
|
|
{"a", {"a","a","a","a","a","a","a","a","a","a","a","a","a","","",""}},
|
|
{"b", {"","","b","","","","b","","","","","","","","","",}},
|
|
{"", {16,""}}};
|
|
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, 64, DimsHW{7, 7}, weightMap["backbone.conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{2, 2});
|
|
conv1->setPaddingNd(DimsHW{3, 3});
|
|
|
|
IScaleLayer* bn1{nullptr};
|
|
if (ibn == "b") {
|
|
bn1 = addInstanceNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
// pytorch: nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
|
|
IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{3, 3});
|
|
TRTASSERT(pool1);
|
|
pool1->setStrideNd(DimsHW{2, 2});
|
|
pool1->setPaddingMode(PaddingMode::kEXPLICIT_ROUND_UP);
|
|
|
|
ILayer* x = distill_basicBlock_ibn(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "backbone.layer1.0.", ibn_layers[ibn][0]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 64, 1, "backbone.layer1.1.", ibn_layers[ibn][1]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 64, 1, "backbone.layer1.2.", ibn_layers[ibn][2]);
|
|
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 128, 2, "backbone.layer2.0.", ibn_layers[ibn][3]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.1.", ibn_layers[ibn][4]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.2.", ibn_layers[ibn][5]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.3.", ibn_layers[ibn][6]);
|
|
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 256, 2, "backbone.layer3.0.", ibn_layers[ibn][7]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.1.", ibn_layers[ibn][8]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.2.", ibn_layers[ibn][9]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.3.", ibn_layers[ibn][10]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.4.", ibn_layers[ibn][11]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.5.", ibn_layers[ibn][12]);
|
|
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 512, _modelCfg.last_stride, "backbone.layer4.0.", ibn_layers[ibn][13]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 512, 512, 1, "backbone.layer4.1.", ibn_layers[ibn][14]);
|
|
x = distill_basicBlock_ibn(network, weightMap, *x->getOutput(0), 512, 512, 1, "backbone.layer4.2.", ibn_layers[ibn][15]);
|
|
|
|
IActivationLayer* relu2 = network->addActivation(*x->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu2);
|
|
return relu2;
|
|
}
|
|
|
|
ILayer* backbone_sbsR50_distill::topology(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) {
|
|
std::string ibn{""};
|
|
if(_modelCfg.with_ibna) {
|
|
ibn = "a";
|
|
}
|
|
std::map<std::string, std::vector<std::string>> ibn_layers{
|
|
{"a", {"a","a","a","a","a","a","a","a","a","a","a","a","a","","",""}},
|
|
{"b", {"","","b","","","","b","","","","","","","","","",}},
|
|
{"", {16,""}}};
|
|
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, 64, DimsHW{7, 7}, weightMap["backbone.conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{2, 2});
|
|
conv1->setPaddingNd(DimsHW{3, 3});
|
|
|
|
IScaleLayer* bn1{nullptr};
|
|
if (ibn == "b") {
|
|
bn1 = addInstanceNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
// pytorch: nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
|
|
IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{3, 3});
|
|
TRTASSERT(pool1);
|
|
pool1->setStrideNd(DimsHW{2, 2});
|
|
pool1->setPaddingMode(PaddingMode::kEXPLICIT_ROUND_UP);
|
|
|
|
ILayer* x = distill_bottleneck_ibn(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "backbone.layer1.0.", ibn_layers[ibn][0]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "backbone.layer1.1.", ibn_layers[ibn][1]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "backbone.layer1.2.", ibn_layers[ibn][2]);
|
|
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 128, 2, "backbone.layer2.0.", ibn_layers[ibn][3]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "backbone.layer2.1.", ibn_layers[ibn][4]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "backbone.layer2.2.", ibn_layers[ibn][5]);
|
|
ILayer* _layer{x};
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_2.0.");
|
|
}
|
|
x = distill_bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 512, 128, 1, "backbone.layer2.3.", ibn_layers[ibn][6]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_2.1.");
|
|
}
|
|
|
|
x = distill_bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 512, 256, 2, "backbone.layer3.0.", ibn_layers[ibn][7]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.1.", ibn_layers[ibn][8]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.2.", ibn_layers[ibn][9]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.3.", ibn_layers[ibn][10]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.0.");
|
|
}
|
|
x = distill_bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 256, 1, "backbone.layer3.4.", ibn_layers[ibn][11]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.1.");
|
|
}
|
|
x = distill_bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 256, 1, "backbone.layer3.5.", ibn_layers[ibn][12]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.2.");
|
|
}
|
|
|
|
x = distill_bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 512, _modelCfg.last_stride, "backbone.layer4.0.", ibn_layers[ibn][13]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "backbone.layer4.1.", ibn_layers[ibn][14]);
|
|
x = distill_bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "backbone.layer4.2.", ibn_layers[ibn][15]);
|
|
|
|
IActivationLayer* relu2 = network->addActivation(*x->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu2);
|
|
return relu2;
|
|
}
|
|
|
|
ILayer* backbone_sbsR34::topology(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) {
|
|
std::string ibn{""};
|
|
if(_modelCfg.with_ibna) {
|
|
ibn = "a";
|
|
}
|
|
std::map<std::string, std::vector<std::string>> ibn_layers{
|
|
{"a", {"a","a","a","a","a","a","a","a","a","a","a","a","a","","",""}}, /* resnet34-ibna */
|
|
{"b", {"","","b","","","","b","","","","","","","","","",}}, /* resnet34-ibnb */
|
|
{"", {16,""}}}; /* vanilla resnet34 */
|
|
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, 64, DimsHW{7, 7}, weightMap["backbone.conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{2, 2});
|
|
conv1->setPaddingNd(DimsHW{3, 3});
|
|
|
|
IScaleLayer* bn1{nullptr};
|
|
if (ibn == "b") {
|
|
bn1 = addInstanceNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
// pytorch: nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
|
|
IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{3, 3});
|
|
TRTASSERT(pool1);
|
|
pool1->setStrideNd(DimsHW{2, 2});
|
|
pool1->setPaddingMode(PaddingMode::kEXPLICIT_ROUND_UP);
|
|
|
|
IActivationLayer* x = basicBlock_ibn(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "backbone.layer1.0.", ibn_layers[ibn][0]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 64, 1, "backbone.layer1.1.", ibn_layers[ibn][1]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 64, 1, "backbone.layer1.2.", ibn_layers[ibn][2]);
|
|
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 64, 128, 2, "backbone.layer2.0.", ibn_layers[ibn][3]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.1.", ibn_layers[ibn][4]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.2.", ibn_layers[ibn][5]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 128, 1, "backbone.layer2.3.", ibn_layers[ibn][6]);
|
|
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 128, 256, 2, "backbone.layer3.0.", ibn_layers[ibn][7]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.1.", ibn_layers[ibn][8]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.2.", ibn_layers[ibn][9]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.3.", ibn_layers[ibn][10]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.4.", ibn_layers[ibn][11]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 256, 1, "backbone.layer3.5.", ibn_layers[ibn][12]);
|
|
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 256, 512, _modelCfg.last_stride, "backbone.layer4.0.", ibn_layers[ibn][13]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 512, 512, 1, "backbone.layer4.1.", ibn_layers[ibn][14]);
|
|
x = basicBlock_ibn(network, weightMap, *x->getOutput(0), 512, 512, 1, "backbone.layer4.2.", ibn_layers[ibn][15]);
|
|
return x;
|
|
}
|
|
|
|
ILayer* backbone_sbsR50::topology(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) {
|
|
/*
|
|
* Reference: https://github.com/JDAI-CV/fast-reid/blob/master/fastreid/modeling/backbones/resnet.py
|
|
* NL layers follow by: nl_layers_per_stage = {'50x': [0, 2, 3, 0],}[depth]
|
|
* for nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) => pool1->setPaddingMode(PaddingMode::kEXPLICIT_ROUND_UP);
|
|
* for nn.MaxPool2d(kernel_size=3, stride=2, padding=1) replace with => pool1->setPaddingNd(DimsHW{1, 1});
|
|
*/
|
|
std::string ibn{""};
|
|
if(_modelCfg.with_ibna) {
|
|
ibn = "a";
|
|
}
|
|
std::map<std::string, std::vector<std::string>> ibn_layers{
|
|
{"a", {"a","a","a","a","a","a","a","a","a","a","a","a","a","","",""}}, /* resnet50-ibna */
|
|
{"b", {"","","b","","","","b","","","","","","","","","",}}, /* resnet50-ibnb(not used in fastreid) */
|
|
{"", {16,""}}}; /* vanilla resnet50 */
|
|
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, 64, DimsHW{7, 7}, weightMap["backbone.conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{2, 2});
|
|
conv1->setPaddingNd(DimsHW{3, 3});
|
|
|
|
IScaleLayer* bn1{nullptr};
|
|
if (ibn == "b") {
|
|
bn1 = addInstanceNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "backbone.bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{3, 3});
|
|
TRTASSERT(pool1);
|
|
pool1->setStrideNd(DimsHW{2, 2});
|
|
pool1->setPaddingMode(PaddingMode::kEXPLICIT_ROUND_UP);
|
|
|
|
IActivationLayer* x = bottleneck_ibn(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "backbone.layer1.0.", ibn_layers[ibn][0]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "backbone.layer1.1.", ibn_layers[ibn][1]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "backbone.layer1.2.", ibn_layers[ibn][2]);
|
|
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 128, 2, "backbone.layer2.0.", ibn_layers[ibn][3]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "backbone.layer2.1.", ibn_layers[ibn][4]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "backbone.layer2.2.", ibn_layers[ibn][5]);
|
|
ILayer* _layer{x};
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_2.0.");
|
|
}
|
|
x = bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 512, 128, 1, "backbone.layer2.3.", ibn_layers[ibn][6]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_2.1.");
|
|
}
|
|
|
|
x = bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 512, 256, 2, "backbone.layer3.0.", ibn_layers[ibn][7]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.1.", ibn_layers[ibn][8]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.2.", ibn_layers[ibn][9]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "backbone.layer3.3.", ibn_layers[ibn][10]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.0.");
|
|
}
|
|
x = bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 256, 1, "backbone.layer3.4.", ibn_layers[ibn][11]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.1.");
|
|
}
|
|
x = bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 256, 1, "backbone.layer3.5.", ibn_layers[ibn][12]);
|
|
_layer = x;
|
|
if(_modelCfg.with_nl) {
|
|
_layer = Non_local(network, weightMap, *x->getOutput(0), "backbone.NL_3.2.");
|
|
}
|
|
|
|
x = bottleneck_ibn(network, weightMap, *_layer->getOutput(0), 1024, 512, _modelCfg.last_stride, "backbone.layer4.0.", ibn_layers[ibn][13]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "backbone.layer4.1.", ibn_layers[ibn][14]);
|
|
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "backbone.layer4.2.", ibn_layers[ibn][15]);
|
|
return x;
|
|
}
|
|
|
|
} |