fast-reid/fastreid/modeling/heads/linear_head.py

76 lines
3.0 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch.nn.functional as F
from torch import nn
from fastreid.layers import *
from fastreid.utils.weight_init import weights_init_classifier
from .build import REID_HEADS_REGISTRY
@REID_HEADS_REGISTRY.register()
class LinearHead(nn.Module):
def __init__(self, cfg):
super().__init__()
# fmt: off
in_feat = cfg.MODEL.HEADS.IN_FEAT
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.neck_feat = cfg.MODEL.HEADS.NECK_FEAT
pool_type = cfg.MODEL.HEADS.POOL_LAYER
if pool_type == 'fastavgpool': self.pool_layer = FastGlobalAvgPool2d()
elif pool_type == 'avgpool': self.pool_layer = nn.AdaptiveAvgPool2d(1)
elif pool_type == 'maxpool': self.pool_layer = nn.AdaptiveMaxPool2d(1)
elif pool_type == 'gempool': self.pool_layer = GeneralizedMeanPoolingP()
elif pool_type == "avgmaxpool": self.pool_layer = AdaptiveAvgMaxPool2d()
elif pool_type == 'clipavgpool': self.pool_layer = ClipGlobalAvgPool2d()
elif pool_type == "identity": self.pool_layer = nn.Identity()
else:
raise KeyError(f"{pool_type} is invalid, please choose from "
f"'avgpool', 'fastavgpool', 'maxpool', 'gempool', "
f"'avgmaxpool', 'clipavgpool' and 'identity'.")
# identity classification layer
cls_type = cfg.MODEL.HEADS.CLS_LAYER
if cls_type == 'linear': self.classifier = nn.Linear(in_feat, num_classes, bias=False)
elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, in_feat, num_classes)
elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, in_feat, num_classes)
elif cls_type == 'amSoftmax': self.classifier = AMSoftmax(cfg, in_feat, num_classes)
else:
raise KeyError(f"{cls_type} is invalid, please choose from "
f"'linear', 'arcSoftmax', 'amSoftmax' and 'circleSoftmax'.")
# fmt: on
self.classifier.apply(weights_init_classifier)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
global_feat = self.pool_layer(features)
global_feat = global_feat[..., 0, 0]
# Evaluation
# fmt: off
if not self.training: return global_feat
# fmt: on
# Training
if self.classifier.__class__.__name__ == 'Linear':
cls_outputs = self.classifier(global_feat)
pred_class_logits = F.linear(global_feat, self.classifier.weight)
else:
cls_outputs = self.classifier(global_feat, targets)
pred_class_logits = self.classifier.s * F.linear(F.normalize(global_feat),
F.normalize(self.classifier.weight))
return {
"cls_outputs": cls_outputs,
"pred_class_logits": pred_class_logits,
"features": global_feat,
}