liaoxingyu 13bb03eb07 feat: add rank result visualization tools
Update visualization tools which can save rank list with AP metrics from high to low, vice versa.
In order to compute AP fast in visualizer, modify rank_cylib to get all_AP instead of mAP.
In this way, we can use Cython to compute results.
2020-05-10 23:17:10 +08:00

253 lines
9.4 KiB
Cython

# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True
# credits: https://github.com/KaiyangZhou/deep-person-reid/blob/master/torchreid/metrics/rank_cylib/rank_cy.pyx
import cython
import numpy as np
cimport numpy as np
from collections import defaultdict
"""
Compiler directives:
https://github.com/cython/cython/wiki/enhancements-compilerdirectives
Cython tutorial:
https://cython.readthedocs.io/en/latest/src/userguide/numpy_tutorial.html
Credit to https://github.com/luzai
"""
# Main interface
cpdef evaluate_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=False):
distmat = np.asarray(distmat, dtype=np.float32)
q_pids = np.asarray(q_pids, dtype=np.int64)
g_pids = np.asarray(g_pids, dtype=np.int64)
q_camids = np.asarray(q_camids, dtype=np.int64)
g_camids = np.asarray(g_camids, dtype=np.int64)
if use_metric_cuhk03:
return eval_cuhk03_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
return eval_market1501_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
cpdef eval_cuhk03_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
cdef:
long num_repeats = 10
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] masked_raw_cmc = np.zeros(num_g, dtype=np.float32)
float[:] cmc, masked_cmc
long num_g_real, num_g_real_masked, rank_idx, rnd_idx
unsigned long meet_condition
float AP
long[:] kept_g_pids, mask
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
for g_idx in range(num_g):
order[g_idx] = indices[q_idx, g_idx]
num_g_real = 0
meet_condition = 0
kept_g_pids = np.zeros(num_g, dtype=np.int64)
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
kept_g_pids[num_g_real] = g_pids[order[g_idx]]
num_g_real += 1
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# cuhk03-specific setting
g_pids_dict = defaultdict(list) # overhead!
for g_idx in range(num_g_real):
g_pids_dict[kept_g_pids[g_idx]].append(g_idx)
cmc = np.zeros(max_rank, dtype=np.float32)
for _ in range(num_repeats):
mask = np.zeros(num_g_real, dtype=np.int64)
for _, idxs in g_pids_dict.items():
# randomly sample one image for each gallery person
rnd_idx = np.random.choice(idxs)
#rnd_idx = idxs[0] # use deterministic for debugging
mask[rnd_idx] = 1
num_g_real_masked = 0
for g_idx in range(num_g_real):
if mask[g_idx] == 1:
masked_raw_cmc[num_g_real_masked] = raw_cmc[g_idx]
num_g_real_masked += 1
masked_cmc = np.zeros(num_g, dtype=np.float32)
function_cumsum(masked_raw_cmc, masked_cmc, num_g_real_masked)
for g_idx in range(num_g_real_masked):
if masked_cmc[g_idx] > 1:
masked_cmc[g_idx] = 1
for rank_idx in range(max_rank):
cmc[rank_idx] += masked_cmc[rank_idx] / num_repeats
for rank_idx in range(max_rank):
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
num_rel += raw_cmc[g_idx]
all_AP[q_idx] = tmp_cmc_sum / num_rel
num_valid_q += 1.
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
for rank_idx in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
avg_cmc[rank_idx] /= num_valid_q
cdef float mAP = 0
for q_idx in range(num_q):
mAP += all_AP[q_idx]
mAP /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), mAP
cpdef eval_market1501_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
cdef:
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float[:] all_INP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] cmc = np.zeros(num_g, dtype=np.float32)
long max_pos_idx = 0
float inp
long num_g_real, rank_idx
unsigned long meet_condition
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
for g_idx in range(num_g):
order[g_idx] = indices[q_idx, g_idx]
num_g_real = 0
meet_condition = 0
# remove gallery samples that have the same pid and camid with query
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
num_g_real += 1
# this condition is true if query appear in gallery
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# compute cmc
function_cumsum(raw_cmc, cmc, num_g_real)
# compute mean inverse negative penalty
# reference : https://github.com/mangye16/ReID-Survey/blob/master/utils/reid_metric.py
max_pos_idx = 0
for g_idx in range(num_g_real):
if (raw_cmc[g_idx] == 1) and (g_idx > max_pos_idx):
max_pos_idx = g_idx
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP[q_idx] = inp
for g_idx in range(num_g_real):
if cmc[g_idx] > 1:
cmc[g_idx] = 1
for rank_idx in range(max_rank):
all_cmc[q_idx, rank_idx] = cmc[rank_idx]
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
num_rel += raw_cmc[g_idx]
all_AP[q_idx] = tmp_cmc_sum / num_rel
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
for rank_idx in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_idx] += all_cmc[q_idx, rank_idx]
avg_cmc[rank_idx] /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), all_AP, all_INP
# Compute the cumulative sum
cdef void function_cumsum(cython.numeric[:] src, cython.numeric[:] dst, long n):
cdef long i
dst[0] = src[0]
for i in range(1, n):
dst[i] = src[i] + dst[i - 1]