mirror of
https://github.com/JDAI-CV/fast-reid.git
synced 2025-06-03 14:50:47 +08:00
80 lines
2.8 KiB
Python
80 lines
2.8 KiB
Python
import sys
|
|
import numpy as np
|
|
import timeit
|
|
import os.path as osp
|
|
|
|
|
|
sys.path.insert(0, osp.dirname(osp.abspath(__file__)) + '/../../..')
|
|
|
|
"""
|
|
Test the speed of cython-based evaluation code. The speed improvements
|
|
can be much bigger when using the real reid data, which contains a larger
|
|
amount of query and gallery images.
|
|
Note: you might encounter the following error:
|
|
'AssertionError: Error: all query identities do not appear in gallery'.
|
|
This is normal because the inputs are random numbers. Just try again.
|
|
"""
|
|
|
|
print('*** Compare running time ***')
|
|
|
|
setup = '''
|
|
import sys
|
|
import os.path as osp
|
|
import numpy as np
|
|
sys.path.insert(0, osp.dirname(osp.abspath(__file__)) + '/../../..')
|
|
from fastreid import evaluation
|
|
num_q = 30
|
|
num_g = 300
|
|
max_rank = 5
|
|
distmat = np.random.rand(num_q, num_g) * 20
|
|
q_pids = np.random.randint(0, num_q, size=num_q)
|
|
g_pids = np.random.randint(0, num_g, size=num_g)
|
|
q_camids = np.random.randint(0, 5, size=num_q)
|
|
g_camids = np.random.randint(0, 5, size=num_g)
|
|
'''
|
|
|
|
# print('=> Using market1501\'s metric')
|
|
# pytime = timeit.timeit(
|
|
# 'evaluation.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=False)',
|
|
# setup=setup,
|
|
# number=20
|
|
# )
|
|
# cytime = timeit.timeit(
|
|
# 'evaluation.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=True)',
|
|
# setup=setup,
|
|
# number=20
|
|
# )
|
|
# print('Python time: {} s'.format(pytime))
|
|
# print('Cython time: {} s'.format(cytime))
|
|
# print('Cython is {} times faster than python\n'.format(pytime / cytime))
|
|
#
|
|
# print('=> Using cuhk03\'s metric')
|
|
# pytime = timeit.timeit(
|
|
# 'evaluation.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=True, use_cython=False)',
|
|
# setup=setup,
|
|
# number=20
|
|
# )
|
|
# cytime = timeit.timeit(
|
|
# 'evaluation.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=True, use_cython=True)',
|
|
# setup=setup,
|
|
# number=20
|
|
# )
|
|
# print('Python time: {} s'.format(pytime))
|
|
# print('Cython time: {} s'.format(cytime))
|
|
# print('Cython is {} times faster than python\n'.format(pytime / cytime))
|
|
|
|
from fastreid.evaluation import evaluate_rank
|
|
print("=> Check precision")
|
|
num_q = 30
|
|
num_g = 300
|
|
max_rank = 5
|
|
distmat = np.random.rand(num_q, num_g) * 20
|
|
q_pids = np.random.randint(0, num_q, size=num_q)
|
|
g_pids = np.random.randint(0, num_g, size=num_g)
|
|
q_camids = np.random.randint(0, 5, size=num_q)
|
|
g_camids = np.random.randint(0, 5, size=num_g)
|
|
cmc, mAP, mINP = evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=False)
|
|
print("Python:\nmAP = {} \ncmc = {}\nmINP = {}".format(mAP, cmc, mINP))
|
|
cmc, mAP, mINP = evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=True)
|
|
print("Cython:\nmAP = {} \ncmc = {}\nmINP = {}".format(mAP, cmc, mINP))
|