mirror of https://github.com/JDAI-CV/fast-reid.git
71 lines
2.3 KiB
Python
71 lines
2.3 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: liaoxingyu2@jd.com
|
|
"""
|
|
|
|
import glob
|
|
import os.path as osp
|
|
import re
|
|
|
|
from .bases import ImageDataset
|
|
from ..datasets import DATASET_REGISTRY
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class DukeMTMC(ImageDataset):
|
|
"""DukeMTMC-reID.
|
|
|
|
Reference:
|
|
- Ristani et al. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. ECCVW 2016.
|
|
- Zheng et al. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro. ICCV 2017.
|
|
|
|
URL: `<https://github.com/layumi/DukeMTMC-reID_evaluation>`_
|
|
|
|
Dataset statistics:
|
|
- identities: 1404 (train + query).
|
|
- images:16522 (train) + 2228 (query) + 17661 (gallery).
|
|
- cameras: 8.
|
|
"""
|
|
dataset_dir = 'DukeMTMC-reID'
|
|
dataset_url = 'http://vision.cs.duke.edu/DukeMTMC/data/misc/DukeMTMC-reID.zip'
|
|
dataset_name = "dukemtmc"
|
|
|
|
def __init__(self, root='datasets', **kwargs):
|
|
# self.root = osp.abspath(osp.expanduser(root))
|
|
self.root = root
|
|
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
|
self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train')
|
|
self.query_dir = osp.join(self.dataset_dir, 'query')
|
|
self.gallery_dir = osp.join(self.dataset_dir, 'bounding_box_test')
|
|
|
|
required_files = [
|
|
self.dataset_dir,
|
|
self.train_dir,
|
|
self.query_dir,
|
|
self.gallery_dir,
|
|
]
|
|
self.check_before_run(required_files)
|
|
|
|
train = self.process_dir(self.train_dir)
|
|
query = self.process_dir(self.query_dir, is_train=False)
|
|
gallery = self.process_dir(self.gallery_dir, is_train=False)
|
|
|
|
super(DukeMTMC, self).__init__(train, query, gallery, **kwargs)
|
|
|
|
def process_dir(self, dir_path, is_train=True):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
pattern = re.compile(r'([-\d]+)_c(\d)')
|
|
|
|
data = []
|
|
for img_path in img_paths:
|
|
pid, camid = map(int, pattern.search(img_path).groups())
|
|
assert 1 <= camid <= 8
|
|
camid -= 1 # index starts from 0
|
|
if is_train:
|
|
pid = self.dataset_name + "_" + str(pid)
|
|
camid = self.dataset_name + "_" + str(camid)
|
|
data.append((img_path, pid, camid))
|
|
|
|
return data
|