fast-reid/fastreid/data/datasets/prai.py

45 lines
1.2 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from scipy.io import loadmat
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
import pdb
__all__ = ['PRAI',]
@DATASET_REGISTRY.register()
class PRAI(ImageDataset):
dataset_dir = "PRAI-1581"
dataset_name = 'prai'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir, 'images')
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
img_paths = glob(os.path.join(train_path, "*.jpg"))
for img_path in img_paths:
split_path = img_path.split('/')
img_info = split_path[-1].split('_')
pid = self.dataset_name + "_" + img_info[0]
camid = self.dataset_name + "_" + img_info[1]
data.append([img_path, pid, camid])
return data