fast-reid/fastreid/modeling/heads/bnneck_head.py
liaoxingyu 2efbc6d371 fix($modeling/heads/bnneck_head): fix heads outputs bug
fix bug of heads outputs, which will lead to no targets return.
2020-04-27 11:48:21 +08:00

50 lines
1.6 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from .build import REID_HEADS_REGISTRY
from ..model_utils import weights_init_kaiming
from ...layers import *
@REID_HEADS_REGISTRY.register()
class BNneckHead(nn.Module):
def __init__(self, cfg, in_feat, pool_layer=nn.AdaptiveAvgPool2d(1)):
super().__init__()
self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.pool_layer = nn.Sequential(
pool_layer,
Flatten()
)
self.bnneck = NoBiasBatchNorm1d(in_feat)
self.bnneck.apply(weights_init_kaiming)
# identity classification layer
if cfg.MODEL.HEADS.CLS_LAYER == 'linear':
self.classifier = nn.Linear(in_feat, self._num_classes, bias=False)
elif cfg.MODEL.HEADS.CLS_LAYER == 'arcface':
self.classifier = Arcface(cfg, in_feat)
elif cfg.MODEL.HEADS.CLS_LAYER == 'circle':
self.classifier = Circle(cfg, in_feat)
else:
self.classifier = nn.Linear(in_feat, self._num_classes, bias=False)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
global_feat = self.pool_layer(features)
bn_feat = self.bnneck(global_feat)
# evaluation
if not self.training:
return bn_feat
# training
try:
pred_class_logits = self.classifier(bn_feat)
except TypeError:
pred_class_logits = self.classifier(bn_feat, targets)
return pred_class_logits, bn_feat, targets