mirror of https://github.com/JDAI-CV/fast-reid.git
160 lines
6.0 KiB
Python
160 lines
6.0 KiB
Python
# encoding: utf-8
|
|
|
|
import logging
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from fastreid.modeling.backbones import BACKBONE_REGISTRY
|
|
from fastreid.modeling.backbones.resnet import Bottleneck, model_zoo, model_urls
|
|
from .non_local_layer import Non_local
|
|
|
|
|
|
class ResNetNL(nn.Module):
|
|
def __init__(self, last_stride, with_ibn, block=Bottleneck, layers=[3, 4, 6, 3], non_layers=[0, 2, 3, 0]):
|
|
self.inplanes = 64
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0], with_ibn=with_ibn)
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, with_ibn=with_ibn)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, with_ibn=with_ibn)
|
|
self.layer4 = self._make_layer(
|
|
block, 512, layers[3], stride=last_stride)
|
|
|
|
self.NL_1 = nn.ModuleList(
|
|
[Non_local(256) for i in range(non_layers[0])])
|
|
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
|
|
self.NL_2 = nn.ModuleList(
|
|
[Non_local(512) for i in range(non_layers[1])])
|
|
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
|
|
self.NL_3 = nn.ModuleList(
|
|
[Non_local(1024) for i in range(non_layers[2])])
|
|
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
|
|
self.NL_4 = nn.ModuleList(
|
|
[Non_local(2048) for i in range(non_layers[3])])
|
|
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, with_ibn=False):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
if planes == 512:
|
|
with_ibn = False
|
|
layers.append(block(self.inplanes, planes, with_ibn, stride=stride, downsample=downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, with_ibn))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
NL1_counter = 0
|
|
if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1]
|
|
for i in range(len(self.layer1)):
|
|
x = self.layer1[i](x)
|
|
if i == self.NL_1_idx[NL1_counter]:
|
|
_, C, H, W = x.shape
|
|
x = self.NL_1[NL1_counter](x)
|
|
NL1_counter += 1
|
|
# Layer 2
|
|
NL2_counter = 0
|
|
if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1]
|
|
for i in range(len(self.layer2)):
|
|
x = self.layer2[i](x)
|
|
if i == self.NL_2_idx[NL2_counter]:
|
|
_, C, H, W = x.shape
|
|
x = self.NL_2[NL2_counter](x)
|
|
NL2_counter += 1
|
|
# Layer 3
|
|
NL3_counter = 0
|
|
if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1]
|
|
for i in range(len(self.layer3)):
|
|
x = self.layer3[i](x)
|
|
if i == self.NL_3_idx[NL3_counter]:
|
|
_, C, H, W = x.shape
|
|
x = self.NL_3[NL3_counter](x)
|
|
NL3_counter += 1
|
|
# Layer 4
|
|
NL4_counter = 0
|
|
if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1]
|
|
for i in range(len(self.layer4)):
|
|
x = self.layer4[i](x)
|
|
if i == self.NL_4_idx[NL4_counter]:
|
|
_, C, H, W = x.shape
|
|
x = self.NL_4[NL4_counter](x)
|
|
NL4_counter += 1
|
|
|
|
return x
|
|
|
|
def load_param(self, model_path):
|
|
param_dict = torch.load(model_path)
|
|
for i in param_dict:
|
|
if 'fc' in i:
|
|
continue
|
|
self.state_dict()[i].copy_(param_dict[i])
|
|
|
|
def random_init(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_resnetNL_backbone(cfg):
|
|
"""
|
|
Create a ResNet Non-local instance from config.
|
|
Returns:
|
|
ResNet: a :class:`ResNet` instance.
|
|
"""
|
|
|
|
# fmt: off
|
|
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
|
|
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
|
|
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
|
|
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
|
|
with_se = cfg.MODEL.BACKBONE.WITH_SE
|
|
depth = cfg.MODEL.BACKBONE.DEPTH
|
|
|
|
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
|
|
nl_layers_per_stage = [0, 2, 3, 0]
|
|
model = ResNetNL(last_stride, with_ibn, Bottleneck, num_blocks_per_stage, nl_layers_per_stage)
|
|
if pretrain:
|
|
if not with_ibn:
|
|
# original resnet
|
|
state_dict = model_zoo.load_url(model_urls[depth])
|
|
else:
|
|
# ibn resnet
|
|
state_dict = torch.load(pretrain_path)['state_dict']
|
|
# remove module in name
|
|
new_state_dict = {}
|
|
for k in state_dict:
|
|
new_k = '.'.join(k.split('.')[1:])
|
|
if model.state_dict()[new_k].shape == state_dict[k].shape:
|
|
new_state_dict[new_k] = state_dict[k]
|
|
state_dict = new_state_dict
|
|
res = model.load_state_dict(state_dict, strict=False)
|
|
logger = logging.getLogger('fastreid.'+__name__)
|
|
logger.info('missing keys is {}'.format(res.missing_keys))
|
|
logger.info('unexpected keys is {}'.format(res.unexpected_keys))
|
|
return model
|