fast-reid/projects/FastClas/fastclas/dataset.py

51 lines
1.4 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from torch.utils.data import Dataset
from fastreid.data.data_utils import read_image
class ClasDataset(Dataset):
"""Image Person ReID Dataset"""
def __init__(self, img_items, transform=None, idx_to_class=None):
self.img_items = img_items
self.transform = transform
if idx_to_class is not None:
self.idx_to_class = idx_to_class
self.class_to_idx = {clas_name: int(i) for i, clas_name in self.idx_to_class.items()}
self.classes = sorted(list(self.idx_to_class.values()))
else:
classes = set()
for i in img_items:
classes.add(i[1])
self.classes = sorted(list(classes))
self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
self.idx_to_class = {idx: clas for clas, idx in self.class_to_idx.items()}
def __len__(self):
return len(self.img_items)
def __getitem__(self, index):
img_item = self.img_items[index]
img_path = img_item[0]
label = self.class_to_idx[img_item[1]]
img = read_image(img_path)
if self.transform is not None: img = self.transform(img)
return {
"images": img,
"targets": label,
"img_paths": img_path,
}
@property
def num_classes(self):
return len(self.classes)