mirror of https://github.com/JDAI-CV/fast-reid.git
138 lines
5.8 KiB
Python
138 lines
5.8 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: lingxiao he
|
|
@contact: helingxiao3@jd.com
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from fastreid.layers import *
|
|
from fastreid.modeling.heads import EmbeddingHead
|
|
from fastreid.modeling.heads.build import REID_HEADS_REGISTRY
|
|
from fastreid.layers.weight_init import weights_init_kaiming
|
|
|
|
|
|
class OcclusionUnit(nn.Module):
|
|
def __init__(self, in_planes=2048):
|
|
super(OcclusionUnit, self).__init__()
|
|
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
|
|
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
|
|
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
|
|
self.mask_layer = nn.Linear(in_planes, 1, bias=True)
|
|
|
|
def forward(self, x):
|
|
SpaFeat1 = self.MaxPool1(x) # shape: [n, c, h, w]
|
|
SpaFeat2 = self.MaxPool2(x)
|
|
SpaFeat3 = self.MaxPool3(x)
|
|
SpaFeat4 = self.MaxPool4(x)
|
|
|
|
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
|
|
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
|
|
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
|
|
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
|
|
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), 2)
|
|
SpatialFeatAll = SpatialFeatAll.transpose(1, 2) # shape: [n, c, m]
|
|
y = self.mask_layer(SpatialFeatAll)
|
|
mask_weight = torch.sigmoid(y[:, :, 0])
|
|
# mask_score = torch.sigmoid(mask_weight[:, :48])
|
|
feat_dim = SpaFeat1.size(2) * SpaFeat1.size(3)
|
|
mask_score = F.normalize(mask_weight[:, :feat_dim], p=1, dim=1)
|
|
# mask_score_norm = mask_score
|
|
# mask_weight_norm = torch.sigmoid(mask_weight)
|
|
mask_weight_norm = F.normalize(mask_weight, p=1, dim=1)
|
|
|
|
mask_score = mask_score.unsqueeze(1)
|
|
|
|
SpaFeat1 = SpaFeat1.transpose(1, 2)
|
|
SpaFeat1 = SpaFeat1.transpose(2, 3) # shape: [n, h, w, c]
|
|
SpaFeat1 = SpaFeat1.view((SpaFeat1.size(0), SpaFeat1.size(1) * SpaFeat1.size(2), -1)) # shape: [n, h*w, c]
|
|
|
|
global_feats = mask_score.matmul(SpaFeat1).view(SpaFeat1.shape[0], -1, 1, 1)
|
|
return global_feats, mask_weight, mask_weight_norm
|
|
|
|
|
|
class Flatten(nn.Module):
|
|
def forward(self, input):
|
|
return input.view(input.size(0), -1)
|
|
|
|
|
|
@REID_HEADS_REGISTRY.register()
|
|
class DSRHead(EmbeddingHead):
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
|
|
feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM
|
|
with_bnneck = cfg.MODEL.HEADS.WITH_BNNECK
|
|
norm_type = cfg.MODEL.HEADS.NORM
|
|
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
|
|
embedding_dim = cfg.MODEL.HEADS.EMBEDDING_DIM
|
|
self.occ_unit = OcclusionUnit(in_planes=feat_dim)
|
|
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
|
|
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
|
|
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
|
|
|
|
occ_neck = []
|
|
if embedding_dim > 0:
|
|
occ_neck.append(nn.Conv2d(feat_dim, embedding_dim, 1, 1, bias=False))
|
|
feat_dim = embedding_dim
|
|
|
|
if with_bnneck:
|
|
occ_neck.append(get_norm(norm_type, feat_dim, bias_freeze=True))
|
|
|
|
self.bnneck_occ = nn.Sequential(*occ_neck)
|
|
self.bnneck_occ.apply(weights_init_kaiming)
|
|
|
|
self.weight_occ = nn.Parameter(torch.normal(0, 0.01, (num_classes, feat_dim)))
|
|
|
|
def forward(self, features, targets=None):
|
|
"""
|
|
See :class:`ReIDHeads.forward`.
|
|
"""
|
|
SpaFeat1 = self.MaxPool1(features) # shape: [n, c, h, w]
|
|
SpaFeat2 = self.MaxPool2(features)
|
|
SpaFeat3 = self.MaxPool3(features)
|
|
SpaFeat4 = self.MaxPool4(features)
|
|
|
|
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
|
|
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
|
|
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
|
|
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
|
|
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), dim=2)
|
|
|
|
foreground_feat, mask_weight, mask_weight_norm = self.occ_unit(features)
|
|
# print(time.time() - st)
|
|
bn_foreground_feat = self.bnneck_occ(foreground_feat)
|
|
bn_foreground_feat = bn_foreground_feat[..., 0, 0]
|
|
|
|
# Evaluation
|
|
if not self.training:
|
|
return bn_foreground_feat, SpatialFeatAll, mask_weight_norm
|
|
|
|
# Training
|
|
global_feat = self.pool_layer(features)
|
|
bn_feat = self.bottleneck(global_feat)
|
|
bn_feat = bn_feat[..., 0, 0]
|
|
|
|
if self.cls_layer.__class__.__name__ == 'Linear':
|
|
pred_class_logits = F.linear(bn_feat, self.weight)
|
|
fore_pred_class_logits = F.linear(bn_foreground_feat, self.weight_occ)
|
|
else:
|
|
pred_class_logits = F.linear(F.normalize(bn_feat), F.normalize(self.weight))
|
|
fore_pred_class_logits = F.linear(F.normalize(bn_foreground_feat), F.normalize(self.weight_occ))
|
|
|
|
cls_outputs = self.cls_layer(pred_class_logits, targets)
|
|
fore_cls_outputs = self.cls_layer(fore_pred_class_logits, targets)
|
|
|
|
# pdb.set_trace()
|
|
return {
|
|
"cls_outputs": cls_outputs,
|
|
"fore_cls_outputs": fore_cls_outputs,
|
|
"pred_class_logits": pred_class_logits * self.cls_layer.s,
|
|
"features": global_feat[..., 0, 0],
|
|
"foreground_features": foreground_feat[..., 0, 0],
|
|
}
|