mirror of https://github.com/JDAI-CV/fast-reid.git
75 lines
2.4 KiB
Python
75 lines
2.4 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: l1aoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import os
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from fastreid.data import samplers
|
|
from fastreid.data.build import fast_batch_collator
|
|
from fastreid.data.datasets import DATASET_REGISTRY
|
|
from fastreid.data.transforms import build_transforms
|
|
from fastreid.utils import comm
|
|
from .attr_dataset import AttrDataset
|
|
|
|
_root = os.getenv("FASTREID_DATASETS", "datasets")
|
|
|
|
|
|
def build_attr_train_loader(cfg):
|
|
train_items = list()
|
|
attr_dict = None
|
|
for d in cfg.DATASETS.NAMES:
|
|
dataset = DATASET_REGISTRY.get(d)(root=_root, combineall=cfg.DATASETS.COMBINEALL)
|
|
if comm.is_main_process():
|
|
dataset.show_train()
|
|
if attr_dict is not None:
|
|
assert attr_dict == dataset.attr_dict, f"attr_dict in {d} does not match with previous ones"
|
|
else:
|
|
attr_dict = dataset.attr_dict
|
|
train_items.extend(dataset.train)
|
|
|
|
train_transforms = build_transforms(cfg, is_train=True)
|
|
train_set = AttrDataset(train_items, train_transforms, attr_dict)
|
|
|
|
num_workers = cfg.DATALOADER.NUM_WORKERS
|
|
mini_batch_size = cfg.SOLVER.IMS_PER_BATCH // comm.get_world_size()
|
|
|
|
data_sampler = samplers.TrainingSampler(len(train_set))
|
|
batch_sampler = torch.utils.data.sampler.BatchSampler(data_sampler, mini_batch_size, True)
|
|
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_set,
|
|
num_workers=num_workers,
|
|
batch_sampler=batch_sampler,
|
|
collate_fn=fast_batch_collator,
|
|
pin_memory=True,
|
|
)
|
|
return train_loader
|
|
|
|
|
|
def build_attr_test_loader(cfg, dataset_name):
|
|
dataset = DATASET_REGISTRY.get(dataset_name)(root=_root, combineall=cfg.DATASETS.COMBINEALL)
|
|
attr_dict = dataset.attr_dict
|
|
if comm.is_main_process():
|
|
dataset.show_test()
|
|
test_items = dataset.test
|
|
|
|
test_transforms = build_transforms(cfg, is_train=False)
|
|
test_set = AttrDataset(test_items, test_transforms, attr_dict)
|
|
|
|
mini_batch_size = cfg.TEST.IMS_PER_BATCH // comm.get_world_size()
|
|
data_sampler = samplers.InferenceSampler(len(test_set))
|
|
batch_sampler = torch.utils.data.BatchSampler(data_sampler, mini_batch_size, False)
|
|
test_loader = DataLoader(
|
|
test_set,
|
|
batch_sampler=batch_sampler,
|
|
num_workers=4, # save some memory
|
|
collate_fn=fast_batch_collator,
|
|
pin_memory=True,
|
|
)
|
|
return test_loader
|