fast-reid/projects/FastAttr/fastattr/data_build.py

75 lines
2.4 KiB
Python

# encoding: utf-8
"""
@author: l1aoxingyu
@contact: sherlockliao01@gmail.com
"""
import os
import torch
from torch.utils.data import DataLoader
from fastreid.data import samplers
from fastreid.data.build import fast_batch_collator
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.transforms import build_transforms
from fastreid.utils import comm
from .attr_dataset import AttrDataset
_root = os.getenv("FASTREID_DATASETS", "datasets")
def build_attr_train_loader(cfg):
train_items = list()
attr_dict = None
for d in cfg.DATASETS.NAMES:
dataset = DATASET_REGISTRY.get(d)(root=_root, combineall=cfg.DATASETS.COMBINEALL)
if comm.is_main_process():
dataset.show_train()
if attr_dict is not None:
assert attr_dict == dataset.attr_dict, f"attr_dict in {d} does not match with previous ones"
else:
attr_dict = dataset.attr_dict
train_items.extend(dataset.train)
train_transforms = build_transforms(cfg, is_train=True)
train_set = AttrDataset(train_items, train_transforms, attr_dict)
num_workers = cfg.DATALOADER.NUM_WORKERS
mini_batch_size = cfg.SOLVER.IMS_PER_BATCH // comm.get_world_size()
data_sampler = samplers.TrainingSampler(len(train_set))
batch_sampler = torch.utils.data.sampler.BatchSampler(data_sampler, mini_batch_size, True)
train_loader = torch.utils.data.DataLoader(
train_set,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=fast_batch_collator,
pin_memory=True,
)
return train_loader
def build_attr_test_loader(cfg, dataset_name):
dataset = DATASET_REGISTRY.get(dataset_name)(root=_root, combineall=cfg.DATASETS.COMBINEALL)
attr_dict = dataset.attr_dict
if comm.is_main_process():
dataset.show_test()
test_items = dataset.test
test_transforms = build_transforms(cfg, is_train=False)
test_set = AttrDataset(test_items, test_transforms, attr_dict)
mini_batch_size = cfg.TEST.IMS_PER_BATCH // comm.get_world_size()
data_sampler = samplers.InferenceSampler(len(test_set))
batch_sampler = torch.utils.data.BatchSampler(data_sampler, mini_batch_size, False)
test_loader = DataLoader(
test_set,
batch_sampler=batch_sampler,
num_workers=4, # save some memory
collate_fn=fast_batch_collator,
pin_memory=True,
)
return test_loader