fast-reid/fastreid/modeling/layers/splat.py

80 lines
2.9 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: liaoxingyu5@jd.com
"""
import torch
import torch.nn.functional as F
from torch.nn import Conv2d, Module, ReLU
from torch.nn.modules.utils import _pair
class SplAtConv2d(Module):
"""Split-Attention Conv2d
"""
def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0),
dilation=(1, 1), groups=1, bias=True,
radix=2, reduction_factor=4,
rectify=False, rectify_avg=False, norm_layer=None,
dropblock_prob=0.0, **kwargs):
super(SplAtConv2d, self).__init__()
padding = _pair(padding)
self.rectify = rectify and (padding[0] > 0 or padding[1] > 0)
self.rectify_avg = rectify_avg
inter_channels = max(in_channels * radix // reduction_factor, 32)
self.radix = radix
self.cardinality = groups
self.channels = channels
self.dropblock_prob = dropblock_prob
if self.rectify:
from rfconv import RFConv2d
self.conv = RFConv2d(in_channels, channels * radix, kernel_size, stride, padding, dilation,
groups=groups * radix, bias=bias, average_mode=rectify_avg, **kwargs)
else:
self.conv = Conv2d(in_channels, channels * radix, kernel_size, stride, padding, dilation,
groups=groups * radix, bias=bias, **kwargs)
self.use_bn = norm_layer is not None
self.bn0 = norm_layer(channels * radix)
self.relu = ReLU(inplace=True)
self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality)
self.bn1 = norm_layer(inter_channels)
self.fc2 = Conv2d(inter_channels, channels * radix, 1, groups=self.cardinality)
if dropblock_prob > 0.0:
self.dropblock = DropBlock2D(dropblock_prob, 3)
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn0(x)
if self.dropblock_prob > 0.0:
x = self.dropblock(x)
x = self.relu(x)
batch, channel = x.shape[:2]
if self.radix > 1:
splited = torch.split(x, channel // self.radix, dim=1)
gap = sum(splited)
else:
gap = x
gap = F.adaptive_avg_pool2d(gap, 1)
gap = self.fc1(gap)
if self.use_bn:
gap = self.bn1(gap)
gap = self.relu(gap)
atten = self.fc2(gap).view((batch, self.radix, self.channels))
if self.radix > 1:
atten = F.softmax(atten, dim=1).view(batch, -1, 1, 1)
else:
atten = F.sigmoid(atten, dim=1).view(batch, -1, 1, 1)
if self.radix > 1:
atten = torch.split(atten, channel // self.radix, dim=1)
out = sum([att * split for (att, split) in zip(atten, splited)])
else:
out = atten * x
return out.contiguous()