fast-reid/fastreid/modeling/meta_arch/baseline.py

58 lines
1.7 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch.nn.functional as F
from torch import nn
from .build import META_ARCH_REGISTRY
from ..backbones import build_backbone
from ..heads import build_reid_heads
from ..layers import GeneralizedMeanPoolingP
from ..losses import reid_losses
@META_ARCH_REGISTRY.register()
class Baseline(nn.Module):
def __init__(self, cfg):
super().__init__()
self._cfg = cfg
# backbone
self.backbone = build_backbone(cfg)
# head
if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool':
pool_layer = nn.AdaptiveAvgPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool':
pool_layer = nn.AdaptiveMaxPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool':
pool_layer = GeneralizedMeanPoolingP()
else:
pool_layer = nn.Identity()
self.heads = build_reid_heads(cfg, 2048, pool_layer)
def forward(self, inputs):
images = inputs["images"]
targets = inputs["targets"]
if not self.training:
pred_feat = self.inference(images)
return pred_feat, targets, inputs["camid"]
# training
features = self.backbone(images) # (bs, 2048, 16, 8)
logits, global_feat = self.heads(features, targets)
return logits, global_feat, targets
def inference(self, images):
assert not self.training
features = self.backbone(images) # (bs, 2048, 16, 8)
pred_feat = self.heads(features)
return F.normalize(pred_feat)
def losses(self, outputs):
logits, global_feat, targets = outputs
return reid_losses(self._cfg, logits, global_feat, targets)