fast-reid/projects/FastShoe/fastshoe/trainer.py

89 lines
4.2 KiB
Python

# -*- coding: utf-8 -*-
# @Time : 2021/10/11 9:47:53
# @Author : zuchen.wang@vipshop.com
# @File : trainer.py
import logging
import os
import torch
from fastreid.data.build import _root
from fastreid.engine import DefaultTrainer
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.utils import comm
from fastreid.data.transforms import build_transforms
from fastreid.data.build import build_reid_train_loader, build_reid_test_loader
from fastreid.evaluation.pair_evaluator import PairEvaluator
from projects.FastShoe.fastshoe.data import PairDataset
class PairTrainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
logger = logging.getLogger(__name__)
logger.info("Prepare training set")
pos_folder_list, neg_folder_list = list(), list()
for d in cfg.DATASETS.NAMES:
data = DATASET_REGISTRY.get(d)(img_dir=os.path.join(_root, 'shoe_crop_all_images'),
anno_path=os.path.join(_root, 'labels/1019/1019_clean_train.json'))
if comm.is_main_process():
data.show_train()
pos_folder_list.extend(data.train)
neg_folder_list.extend(data.query)
transforms = build_transforms(cfg, is_train=True)
train_set = PairDataset(img_root=os.path.join(_root, 'shoe_crop_all_images'),
pos_folders=pos_folder_list, neg_folders=neg_folder_list, transform=transforms, mode='train')
data_loader = build_reid_train_loader(cfg, train_set=train_set)
return data_loader
@classmethod
def build_test_loader(cls, cfg, dataset_name):
transforms = build_transforms(cfg, is_train=False)
if dataset_name == 'ShoeDataset':
shoe_img_dir = os.path.join(_root, 'shoe_crop_all_images')
if cfg.eval_only:
# for testing
mode = 'test'
anno_path = os.path.join(_root, 'labels/1019/1019_clean_test.json')
else:
# for validation in train phase
mode = 'val'
anno_path = os.path.join(_root, 'labels/1019/1019_clean_val.json')
data = DATASET_REGISTRY.get(dataset_name)(img_dir=shoe_img_dir, anno_path=anno_path)
test_set = PairDataset(img_root=shoe_img_dir,
pos_folders=data.train, neg_folders=data.query, transform=transforms, mode=mode)
elif dataset_name == 'OnlineDataset':
if cfg.eval_only:
# for testing
test_set_0830 = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0830/shoe_crop_images'),
anno_path=os.path.join(_root, 'excel/0830/excel_pair_crop_val.csv'),
transform=transforms)
# for validation in train phase
test_set_0908 = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0908/shoe_crop_images'),
anno_path=os.path.join(_root, 'excel/0908/excel_pair_crop_val.csv'),
transform=transforms)
test_set = torch.utils.data.ConcatDataset((test_set_0830, test_set_0908))
else:
test_set = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0908/shoe_crop_images'),
anno_path=os.path.join(_root, 'excel/0908/excel_pair_crop_val.csv'),
transform=transforms)
if comm.is_main_process():
if dataset_name == 'ShoeDataset':
data.show_test()
else:
test_set.show_test()
data_loader, _ = build_reid_test_loader(cfg, test_set=test_set)
return data_loader
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_dir=None):
data_loader = cls.build_test_loader(cfg, dataset_name)
return data_loader, PairEvaluator(cfg, output_dir)