mirror of https://github.com/JDAI-CV/fast-reid.git
310 lines
11 KiB
Python
310 lines
11 KiB
Python
# encoding: utf-8
|
|
# ref: https://github.com/CaoWGG/RepVGG/blob/develop/repvgg.py
|
|
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from fastreid.layers import *
|
|
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
|
|
from .build import BACKBONE_REGISTRY
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def deploy(self, mode=False):
|
|
self.deploying = mode
|
|
for module in self.children():
|
|
if hasattr(module, 'deploying'):
|
|
module.deploy(mode)
|
|
|
|
|
|
nn.Sequential.deploying = False
|
|
nn.Sequential.deploy = deploy
|
|
|
|
|
|
def conv_bn(norm_type, in_channels, out_channels, kernel_size, stride, padding, groups=1):
|
|
result = nn.Sequential()
|
|
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
|
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
|
|
bias=False))
|
|
result.add_module('bn', get_norm(norm_type, out_channels))
|
|
return result
|
|
|
|
|
|
class RepVGGBlock(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, norm_type, kernel_size,
|
|
stride=1, padding=0, groups=1):
|
|
super(RepVGGBlock, self).__init__()
|
|
self.deploying = False
|
|
|
|
self.groups = groups
|
|
self.in_channels = in_channels
|
|
|
|
assert kernel_size == 3
|
|
assert padding == 1
|
|
|
|
padding_11 = padding - kernel_size // 2
|
|
|
|
self.nonlinearity = nn.ReLU()
|
|
|
|
self.in_channels = in_channels
|
|
self.in_channels = in_channels
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.groups = groups
|
|
|
|
self.register_parameter('fused_weight', None)
|
|
self.register_parameter('fused_bias', None)
|
|
|
|
self.rbr_identity = get_norm(norm_type, in_channels) if out_channels == in_channels and stride == 1 else None
|
|
self.rbr_dense = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
|
|
stride=stride, padding=padding, groups=groups)
|
|
self.rbr_1x1 = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=1,
|
|
stride=stride, padding=padding_11, groups=groups)
|
|
|
|
def forward(self, inputs):
|
|
if self.deploying:
|
|
assert self.fused_weight is not None and self.fused_bias is not None, \
|
|
"Make deploy mode=True to generate fused weight and fused bias first"
|
|
fused_out = self.nonlinearity(torch.nn.functional.conv2d(
|
|
inputs, self.fused_weight, self.fused_bias, self.stride, self.padding, 1, self.groups))
|
|
return fused_out
|
|
|
|
if self.rbr_identity is None:
|
|
id_out = 0
|
|
else:
|
|
id_out = self.rbr_identity(inputs)
|
|
out = self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
|
|
|
|
return out
|
|
|
|
def get_equivalent_kernel_bias(self):
|
|
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
|
|
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
|
|
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
|
|
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
|
|
|
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
|
if kernel1x1 is None:
|
|
return 0
|
|
else:
|
|
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
|
|
|
def _fuse_bn_tensor(self, branch):
|
|
if branch is None:
|
|
return 0, 0
|
|
if isinstance(branch, nn.Sequential):
|
|
kernel = branch.conv.weight
|
|
running_mean = branch.bn.running_mean
|
|
running_var = branch.bn.running_var
|
|
gamma = branch.bn.weight
|
|
beta = branch.bn.bias
|
|
eps = branch.bn.eps
|
|
else:
|
|
assert branch.__class__.__name__.find('BatchNorm') != -1
|
|
if not hasattr(self, 'id_tensor'):
|
|
input_dim = self.in_channels // self.groups
|
|
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
|
|
for i in range(self.in_channels):
|
|
kernel_value[i, i % input_dim, 1, 1] = 1
|
|
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
|
kernel = self.id_tensor
|
|
running_mean = branch.running_mean
|
|
running_var = branch.running_var
|
|
gamma = branch.weight
|
|
beta = branch.bias
|
|
eps = branch.eps
|
|
std = (running_var + eps).sqrt()
|
|
t = (gamma / std).reshape(-1, 1, 1, 1)
|
|
return kernel * t, beta - running_mean * gamma / std
|
|
|
|
def deploy(self, mode=False):
|
|
self.deploying = mode
|
|
if mode:
|
|
fused_weight, fused_bias = self.get_equivalent_kernel_bias()
|
|
self.register_parameter('fused_weight', nn.Parameter(fused_weight))
|
|
self.register_parameter('fused_bias', nn.Parameter(fused_bias))
|
|
del self.rbr_identity, self.rbr_1x1, self.rbr_dense
|
|
|
|
|
|
class RepVGG(nn.Module):
|
|
|
|
def __init__(self, last_stride, norm_type, num_blocks, width_multiplier=None, override_groups_map=None):
|
|
super(RepVGG, self).__init__()
|
|
|
|
assert len(width_multiplier) == 4
|
|
|
|
self.deploying = False
|
|
self.override_groups_map = override_groups_map or dict()
|
|
|
|
assert 0 not in self.override_groups_map
|
|
|
|
self.in_planes = min(64, int(64 * width_multiplier[0]))
|
|
|
|
self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, norm_type=norm_type,
|
|
kernel_size=3, stride=2, padding=1)
|
|
self.cur_layer_idx = 1
|
|
self.stage1 = self._make_stage(int(64 * width_multiplier[0]), norm_type, num_blocks[0], stride=2)
|
|
self.stage2 = self._make_stage(int(128 * width_multiplier[1]), norm_type, num_blocks[1], stride=2)
|
|
self.stage3 = self._make_stage(int(256 * width_multiplier[2]), norm_type, num_blocks[2], stride=2)
|
|
self.stage4 = self._make_stage(int(512 * width_multiplier[3]), norm_type, num_blocks[3], stride=last_stride)
|
|
|
|
def _make_stage(self, planes, norm_type, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
blocks = []
|
|
for stride in strides:
|
|
cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
|
|
blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, norm_type=norm_type,
|
|
kernel_size=3, stride=stride, padding=1, groups=cur_groups))
|
|
self.in_planes = planes
|
|
self.cur_layer_idx += 1
|
|
return nn.Sequential(*blocks)
|
|
|
|
def deploy(self, mode=False):
|
|
self.deploying = mode
|
|
for module in self.children():
|
|
if hasattr(module, 'deploying'):
|
|
module.deploy(mode)
|
|
|
|
def forward(self, x):
|
|
out = self.stage0(x)
|
|
out = self.stage1(out)
|
|
out = self.stage2(out)
|
|
out = self.stage3(out)
|
|
out = self.stage4(out)
|
|
return out
|
|
|
|
|
|
optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
|
|
g2_map = {l: 2 for l in optional_groupwise_layers}
|
|
g4_map = {l: 4 for l in optional_groupwise_layers}
|
|
|
|
|
|
def create_RepVGG_A0(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
|
|
width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_A1(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
|
|
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_A2(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
|
|
width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_B0(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_B1(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2, 2, 2, 4], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_B1g2(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map)
|
|
|
|
|
|
def create_RepVGG_B1g4(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map)
|
|
|
|
|
|
def create_RepVGG_B2(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_B2g2(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map)
|
|
|
|
|
|
def create_RepVGG_B2g4(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map)
|
|
|
|
|
|
def create_RepVGG_B3(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[3, 3, 3, 5], override_groups_map=None)
|
|
|
|
|
|
def create_RepVGG_B3g2(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map)
|
|
|
|
|
|
def create_RepVGG_B3g4(last_stride, norm_type):
|
|
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
|
|
width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map)
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_repvgg_backbone(cfg):
|
|
"""
|
|
Create a RepVGG instance from config.
|
|
Returns:
|
|
RepVGG: a :class: `RepVGG` instance.
|
|
"""
|
|
|
|
# fmt: off
|
|
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
|
|
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
|
|
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
|
|
bn_norm = cfg.MODEL.BACKBONE.NORM
|
|
depth = cfg.MODEL.BACKBONE.DEPTH
|
|
# fmt: on
|
|
|
|
func_dict = {
|
|
'A0': create_RepVGG_A0,
|
|
'A1': create_RepVGG_A1,
|
|
'A2': create_RepVGG_A2,
|
|
'B0': create_RepVGG_B0,
|
|
'B1': create_RepVGG_B1,
|
|
'B1g2': create_RepVGG_B1g2,
|
|
'B1g4': create_RepVGG_B1g4,
|
|
'B2': create_RepVGG_B2,
|
|
'B2g2': create_RepVGG_B2g2,
|
|
'B2g4': create_RepVGG_B2g4,
|
|
'B3': create_RepVGG_B3,
|
|
'B3g2': create_RepVGG_B3g2,
|
|
'B3g4': create_RepVGG_B3g4,
|
|
}
|
|
|
|
model = func_dict[depth](last_stride, bn_norm)
|
|
|
|
if pretrain:
|
|
try:
|
|
state_dict = torch.load(pretrain_path, map_location=torch.device("cpu"))
|
|
logger.info(f"Loading pretrained model from {pretrain_path}")
|
|
except FileNotFoundError as e:
|
|
logger.info(f'{pretrain_path} is not found! Please check this path.')
|
|
raise e
|
|
except KeyError as e:
|
|
logger.info("State dict keys error! Please check the state dict.")
|
|
raise e
|
|
|
|
incompatible = model.load_state_dict(state_dict, strict=False)
|
|
if incompatible.missing_keys:
|
|
logger.info(
|
|
get_missing_parameters_message(incompatible.missing_keys)
|
|
)
|
|
if incompatible.unexpected_keys:
|
|
logger.info(
|
|
get_unexpected_parameters_message(incompatible.unexpected_keys)
|
|
)
|
|
|
|
return model
|